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Quasi-geostrophic theory forms the basis for much of our understanding of mid-latitude atmospheric dynam-
ics. �e theory is typically presented in either its f -plane form or its β-plane form. However, for many appli-
cations, including diagnostic use in global climate modeling, a fully spherical version would be most useful.
Such a global theory does in fact exist and has formany years, but few in the scienti�c community seem to have
ever been aware of it. In the context of shallow water dynamics, it is shown that the spherical version of quasi-
geostrophic theory is easily derived (re-derived) based on a partitioning of the �ow between nondivergent and
irrotational components, as opposed to a partitioning between geostrophic and ageostrophic components. In
this way, the invertibility principle is expressed as a relation between the streamfunction and the potential vor-
ticity, rather than between the geopotential and the potential vorticity. �is global theory is then extended by
showing that the invertibility principle can be solved analytically using spheroidal harmonic transforms, an
advancement that greatly improves the usefulness of this “forgotten” theory. When the governing equation for
the time evolution of the potential vorticity is linearized about a state of rest, a simple Rossby-Haurwitz wave
dispersion relation is derived and examined. �ese waves have a horizontal structure described by spheroidal
harmonics, and the Rossby-Haurwitz wave frequencies are given in terms of the eigenvalues of the spheroidal
harmonic operator. Except for sectoral harmonics with low zonal wavenumber, the quasi-geostrophic Rossby-
Haurwitz frequencies agree very well with those calculated from the primitive equations. One of the many
possible applications of spherical quasi-geostrophic theory is to the study of quasi-geostrophic turbulence on
the sphere. In this context, the theory is used to derive an anisotropic Rhines barrier in three-dimensional
wavenumber space.
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1. Introduction

One of the barriers to progress in tropical dynamics is the un-
derdeveloped state of potential vorticity (PV) arguments and
interpretations of balanced tropical �ows. While it is true that
certain aspects of tropical �ows, such as the inertia-gravity
wave and Kelvin wave contributions, are not controlled by the
evolving PV�eld, it is also true that amajor part ofmany trop-
ical �ows is quasi-geostrophic in character and under con-
trol of the PV �eld (Schubert and Masarik 2006). Quasi-
geostrophic theory is typically developed and applied in either
its f -plane form or its β-plane form. A fully spherical version
would help provide a uni�ed view of midlatitude and trop-
ical disturbances and would be very useful for a number of
applications, including diagnostic use in global climate mod-
eling. �e existence of such a spherical version, however, was
unknown to most in the scienti�c community (including the
authors of this paper). It wasn’t until a�er we had successfully
derived a fully spherical version of quasi-geostrophic theory,
that we discovered that this theory was not actually new, but
in fact had been formulated long ago by Kuo (1959, see his
equations 5 and 6) and (more clearly) by Charney and Stern
(1962, see their equation 2.25). Both of these groups actually
derived the spherical version for a fully strati�ed atmosphere,

but these results easily lead to the same shallow water version
as is presented here. For some reason these early results were
not well known or were forgotten. It is interesting that even
Charney and Stern (1962) did not reference Kuo (1959) even
though both groups had ties to the same institution.

�e purpose of this paper is to re-introduce the scienti�c
community to a fully spherical version of quasi-geostrophic
theory and then to advance the usefulness of this theory
through the application of spheroidal harmonics, to test this
theory by comparing Rossby-Haurwitz wave dispersion re-
sults with those from the primitive equations, and to apply
it to the study of turbulence on the sphere. In Section 2 we
present the shallow water version of this theory by showing
our derivation of it, a derivation that involves the direct ap-
proximation of the exact PV equation. �is approach is more
direct than that taken by Kuo and by Charney and Stern, but
leads to the same fundamental result. Although the resulting
PV conservation relation is nonlinear, the associated invert-
ibility principle is linear and involves an elliptic “spheroidal
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operator." �is latter observation allows us to advance this
theory as discussed in Section 3, for it enables us to solve
the invertibility principle analytically using spheroidal har-
monics. One way to assess the accuracy of the global quasi-
geostrophic theory is to derive its Rossby-Haurwitz wave fre-
quencies and then compare them with the “exact" frequen-
cies obtained numerically from the primitive equations. Such
a test of the theory is performed in Section 4. �ere are
many applications in which global quasi-geostrophic theory
can provide new insights. �e study of quasi-geostrophic tur-
bulence and the emergence of zonal jets is one such applica-
tion as presented in Section 5. For this problem, global quasi-
geostrophic theory provides a simple framework to generalize
the concept of the anisotropic Rhines barrier. Finally, some
historical remarks are given in Section 6.

2. Shallow water quasi-geostrophic theory on the
sphere

In order to provide a simple and straightforward derivation
of spherical quasi-geostrophic theory, consider motions of a
shallowwater �uid on the sphere. Using spherical coordinates
(λ, ϕ) we can write the shallow water primitive equations as

Du
Dt
− (2Ω sin ϕ +

u tan ϕ
a
) v + g ∂h

a cos ϕ∂λ
= 0, (2.1)

Dv
Dt
+ (2Ω sin ϕ +

u tan ϕ
a
)u + g ∂h

a∂ϕ
= 0, (2.2)

Dh
Dt
+ (h̄ + h)( ∂u

a cos ϕ∂λ
+

∂(v cos ϕ)
a cos ϕ∂ϕ

) = 0, (2.3)

where u is the eastward component of velocity, v the north-
ward component, h the deviation of the �uid depth from the
global mean depth h̄, Ω the earth’s rotation rate, a the earth’s
radius, g the acceleration of gravity, and

D
Dt
=

∂
∂t
+ u

∂
a cos ϕ∂λ

+ v
∂

a∂ϕ
(2.4)

the material derivative. �e potential vorticity equation, de-
rived from (2.1)–(2.3), is

DP
Dt
= 0, (2.5)

where P is the potential vorticity given by

P =
h̄

h̄ + h
(2Ω sin ϕ +

∂v
a cos ϕ∂λ

−

∂(u cos ϕ)
a cos ϕ∂ϕ

)

= 2Ωµ + ( h̄
h̄ + h

)∇2ψ − 2Ωµ ( h
h̄ + h

) ,
(2.6)

with µ = sin ϕ andψ denoting the streamfunction for the non-
divergent part of the �ow

(uψ , vψ) = (− ∂ψ
a∂ϕ

,
∂ψ

a cos ϕ∂λ
)

= (− (1 − µ2)1/2 ∂ψ
a∂µ

, (1 − µ2)−1/2 ∂ψ
a∂λ
) .

(2.7)

�e derivations given in Kuo (1959) and Charney and
Stern (1962) involve approximation of the vorticity and ther-
modynamic equations. Here we follow amore direct route via
the potential vorticity equation (2.5). We �rst assume ∣h∣≪ h̄
and then approximate (2.6) by

P ≈ 2Ωµ +∇2ψ − 2Ωµ
h̄

h = 2Ωµ + q, (2.8)

where q is the potential vorticity anomaly. Next, we need to
formulate a balance condition between the mass �eld h and
the nondivergent wind �eld ψ. Such a balance condition will
convert (2.8) into an invertibility principle, i.e., a relation be-
tween q and either h or ψ. Following the arguments of Kuo
(1959) and Charney and Stern (1962), we now assume (i) that
ψ and h are related by the linear balance condition

∇ ⋅ (2Ωµ∇ψ) = g∇2h, (2.9)

and (ii) that 2Ωµ can be considered as slowly varying, so that
(2.9) can be simpli�ed to

∇
2(gh − 2Ωµψ) = 0, (2.10)

from which the local linear balance condition

gh = 2Ωµψ (2.11)

then follows. Using (2.11) and approximating the advecting
velocity in (2.4) by (uψ , vψ), substitution of (2.8) into (2.5)
yields

∂q
∂t
+

1
a2

∂(ψ, q)
∂(λ, µ) +

2Ω
a2

∂ψ
∂λ
= 0, (2.12)

where
∇

2ψ − εµ2

a2
ψ = q (2.13)

is now the quasi-geostrophic potential vorticity anomaly, and
where

ε = 4Ω2a2

gh̄
= ( a
(gh̄)1/2/(2Ω))

2

(2.14)

is Lamb’s parameter, which, according to the second equal-
ity, can be interpreted as the square of the ratio of the earth’s
radius to the Rossby radius of deformation. Equations (2.12)
and (2.13) form a closed system in q andψ, and they constitute
the shallow water version of global quasi-geostrophic theory.
Note that the term “quasi-geostrophic theory" is used here
in a general sense, since the relation between the mass �eld
and the nondivergent wind �eld given by (2.11) is not strictly
equivalent to geostrophic balance. �e term “local linear bal-
ance theory" might also be appropriate. �e system (2.12)–
(2.13) possesses a reasonable total energy principle, which is
discussed in Section 5.
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3. Spheroidal harmonics

�e PV conservation relation (2.12) is nonlinear, but the in-
vertibility principle (2.13) is linear and can be solved ana-
lytically using spheroidal harmonics. �e introduction of
spheroidal harmonics will allow for straightforward analyses
of the dispersion properties of Rossby-Haurwitz waves (Sec-
tion 4) and the cascades of energy and potential enstrophy
(Section 5). �e spheroidal harmonics Smn(ε; λ, µ) satisfy

∇
2Smn −

εµ2

a2
Smn = −

αmn(ε)
a2

Smn , (3.1)

wherem is the zonal wavenumber, n is the total wavenumber,
and−αmn(ε)/a2 is the eigenvalue of the operator∇2

−εµ2/a2.
Spheroidal harmonics have the separable form

Smn(ε; λ, µ) = Smn(ε; µ)e imλ , (3.2)

which, when substituted in (3.1), yields the ordinary di�eren-
tial equation

d
dµ
[(1 − µ2)dSmn

dµ
] + (αmn − εµ2 −

m2

1 − µ2
) Smn = 0 (3.3)

for the meridional structure functions Smn(ε; µ). Equation
(3.3) is known as the “spheroidal wave equation," and its solu-
tions (eigenfunctions) are typically referred to as “spheroidal
wave functions." �e values of αmn(ε) are the eigenvalues
of the spheroidal wave equation. A concise summary of
spheroidal harmonics is given in Abramowitz and Stegun
(1965, 751–769). More extensive discussions are given in
Morse and Feshbach (1953), Stratton et al. (1956), Flammer
(1957), and Meixner et al. (1980). �e book by Flammer is
particularly useful.

In a continuously strati�edmodel the shallowwatermean
�uid depth h̄ is replaced by a set of equivalent depths, and a
wide range of Lamb’s parameters is then possible (including
negative ε for forced problems). As shown in Table 1, values
of ε ranging between 10 and 10,000 lead to meaningful equiv-
alent depths (Fulton and Schubert 1985). Unfortunately, for
general ε, closed form expressions for αmn(ε) and Smn(ε; µ)
are not available. However, very accurate approximations of
αmn(ε) and Smn(ε; µ) can be obtained by the procedure de-
scribed in Appendix A (based on Hodge 1970). We have used
this procedure to produce Tables 2–5, which display values of
αmn(ε) for ε = 10, 100, 1000, 10000. �ese tables are in ex-
cellent agreement with the abbreviated (m ≤ 2) tables given
by Abramowitz and Stegun (1965, 760–764). Version 6 of the
Mathematica so�ware package now has built-in support for
computing spheroidal harmonic eigenvalues and eigenfunc-
tions, a feature that was also used to verify the results given in
Tables 2–5.

Although closed form expressions for αmn(ε) and
Smn(ε; µ) are not available for general values of ε, there are
certain special cases where closed form expressions or asymp-
totic approximations are available. For example, when ε = 0,

Table 1. Equivalent depths (h̄) and gravity wave speeds ((gh̄)1/2)
associated with select values of Lamb’s parameter (ε). Note that
ε = 10 roughly corresponds to the external mode, and ε = 10, 000
roughly corresponds to the fifth or sixth internal mode.

Lamb’s Equivalent Gravity Wave
Parameter Depth (m) Speed (m s−1)

10 8, 809. 293.8
100 880.9 92.91

1, 000 88.09 29.38
10, 000 8.809 9.291

the spheroidal harmonic eigenvalues become independent of
m. In that case, αmn(0) = n(n + 1) and the spheroidal har-
monics reduce to the spherical harmonics, i.e.,

Smn(0; λ, µ) ∼ Pm
n (µ)e imλ , (3.4)

where
Pm
n (µ) = (1 − µ2)

m/2 dmPn(µ)
dµm (3.5)

is the associated Legendre function, with Pn(µ) denoting the
ordinary Legendre polynomial. In this special case (ε = 0),
we see from (2.13) that there is no distinction between vortic-
ity and potential vorticity, so that the shallow water, quasi-
geostrophic model reduces to the nondivergent barotropic
model. Approximate formulas for αmn(ε) are also available,
including a power series formula valid for small values of ε
and an asymptotic formula valid for large values of ε. �e lat-
ter formula is of most interest here since we shall be dealing
with values of ε that are greater than or equal to 10. �e �rst
few terms of the asymptotic formula yield

αmn(ε) = ε1/2[1 + 2(n −m)] +m2

−
1
8 {[1 + 2(n −m)]2 + 5} + O (ε−1/2) .

(3.6)

�e extension of this asymptotic formula, accurate toO (ε−3),
is given by Flammer (1957, p. 60) andAbramowitz and Stegun
(1965, p. 754). �e derivation of the �rst term in the asymp-
totic expansion (3.6) demonstrates the connection to equato-
rial β-plane theory and is given in Appendix B.

Even when ε ≠ 0 the spherical harmonic eigenvalues
and eigenfunctions are relevant. �is can be seen by not-
ing that in (3.1) the order of magnitude of ∇2 is n2/a2, while
the order of magnitude of εµ2/a2 is ε/a2. �us, for the sec-
ond term in (3.1) to be small compared with the �rst, we
must have n ≫ ε 1

2 , in which case the spheroidal harmon-
ics are closely approximated by the spherical harmonics. For
ε = 10, 100, 1000, 10000 this condition is n ≫ 3, 10, 32, 100.
Note that in Table 2 the upper row of eigenvalues αmn(ε) for
n = 10 and ε = 10 are close to the spherical harmonic value of
n(n + 1) = 110. For ε = 100, 1000, 10000 , values of n larger
than those displayed in Tables 3–5 are required in order for
the spheroidal harmonic eigenvalues to approach the spheri-
cal harmonic value of n(n + 1). However, for a model with a
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Table 2. The upper table shows eigenvalues αmn(ε) of the spheroidal wave equation (3.3) for ε = 10. The lower table shows quasi-
geostrophic Rossby-Haurwitz wave frequencies νmn(ε)/(2Ω) for ε = 10. For comparison, the values in parentheses in the lower table are
the primitive equation values of Longuet-Higgins (1968). The * signifies that we have corrected an error in Longuet-Higgins’ Table 5.

Eigenvalues: αmn(10)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 115.040 114.993 114.851 114.615 114.285 113.863
9 95.0497 94.9911 94.8157 94.5245 94.1190 93.6015
8 77.0625 76.9882 76.7661 76.3982 75.8877 75.2389
7 61.0810 60.9835 60.6925 60.2129 59.5518 58.7180
6 47.1096 46.9750 46.5761 45.9253 45.0402 43.9398
5 35.1576 34.9571 34.3740 33.4474 32.2210 30.7354
4 25.2513 24.9063 23.9791 22.5961 20.8565
3 17.4674 16.7063 15.1221 13.0231
2 11.7904 9.91621 7.26504
1 7.28525 3.64390
0 2.30504

Dimensionless Frequencies: νmn(10)/(2Ω)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 0.0 0.00869618 0.0174139 0.0261747 0.0350003 0.0439125

(0.043894)
9 0.0 0.0105273 0.0210936 0.0317378 0.0424994 0.0534180

(0.042468) (0.053390)
8 0.0 0.0129890 0.0260532 0.0392679 0.0527094 0.0664549

(0.039216) (0.052658) (0.066419)
7 0.0 0.0163979 0.0329530 0.0498232 0.0671685 0.0851528

(0.032874) (0.049728) (0.067086) (0.085126)∗
6 0.0 0.0212879 0.0429405 0.0653234 0.0888097 0.113792

(0.021192) (0.042775) (0.065141) (0.088704) (0.11391)
5 0.0 0.0286065 0.0581835 0.0896930 0.124143 0.162679

(0.028377) (0.057808) (0.089365) (0.12424) (0.16391)
4 0.0 0.0401505 0.0834061 0.132766 0.191787

(0.039534) (0.082513) (0.13253) (0.19475)
3 0.0 0.0598577 0.132257 0.230360

(0.058026) (0.13042) (0.23883)
2 0.0 0.100845 0.275291

(0.094951) (0.30561)
1 0.0 0.274432

(0.41399)

truncation near n = 200, all the spheroidal harmonic eigen-
values and eigenfunctions near this truncation limit will be
close to their corresponding spherical harmonic values.

�e orthonormality relation for spheroidal harmonics is

1
4π ∫ 1

−1 ∫
2π

0
Smn(ε; λ, µ)S∗m′n′(ε; λ, µ) dλ dµ

=

⎧⎪⎪⎨⎪⎪⎩
1 (m′ , n′) = (m, n)
0 (m′ , n′) ≠ (m, n),

(3.7)

or, in terms of Smn(ε; µ),

1
2 ∫

1

−1
Smn(ε; µ)Smn′(ε; µ) dµ =

⎧⎪⎪⎨⎪⎪⎩
1 n′ = n
0 n′ ≠ n.

(3.8)

For a speci�ed value of ε, the spheroidal harmonic transform
pair for the potential vorticity is

qmn(t) = 1
4π ∫ 1

−1 ∫
2π

0
q(λ, µ, t)S∗mn(ε; λ, µ) dλ dµ, (3.9)
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Table 3. As in Table 2, but for ε = 100.

Eigenvalues: αmn(100)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 163.097 162.367 160.273 157.003 152.750 147.678
9 143.872 142.812 139.957 135.722 130.425 124.294
8 127.051 125.271 121.210 115.664 109.078 101.712
7 112.881 109.450 103.598 96.4081 88.3308 79.6032
6 101.035 94.6220 86.5075 77.4676 67.7973 57.6507
5 89.7393 79.7729 69.3031 58.4013 47.1437 35.5881
4 76.9933 64.1064 51.5248 38.8899 26.1251
3 62.2577 47.3015 32.9382 18.7460
2 45.8690 29.3389 13.4631
1 28.1335 10.2878
0 9.22830

Dimensionless Frequencies: νmn(100)/(2Ω)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 0.0 0.00615889 0.0124787 0.0191079 0.0261865 0.0338574

(0.033771)
9 0.0 0.00700223 0.0142901 0.0221041 0.0306690 0.0402273

(0.030552) (0.040113)
8 0.0 0.00798267 0.0165003 0.0259371 0.0366711 0.0491584

(0.025791) (0.036505) (0.049022)
7 0.0 0.00913658 0.0193053 0.0311177 0.0452843 0.0628115

(0.019149) (0.030902) (0.045060) (0.062725)
6 0.0 0.0105684 0.0231194 0.0387258 0.0589994 0.0867292

(0.01045) (0.022886) (0.038410) (0.058754) (0.087229)
5 0.0 0.0125356 0.0288587 0.0513687 0.0848470 0.140496

(0.012368) (0.028507) (0.050922) (0.085152) (0.14898)
4 0.0 0.0155991 0.0388162 0.0771409 0.153109

(0.015349) (0.038242) (0.076911) (0.17028)
3 0.0 0.0211410 0.0607198 0.160034

(0.020706) (0.059794) (0.19684)
2 0.0 0.0340844 0.148554

(0.033085) (0.22997)
1 0.0 0.0972028

(0.27096)

and

q(λ, µ, t) =
∞

∑
m=−∞

∞

∑
n=∣m∣

qmn(t)Smn(ε; λ, µ). (3.10)

An identical transform pair exists for ψmn(t) and ψ(λ, µ, t).
Note that (3.9) can be obtained by multiplying (3.10) by
S∗m′n′(λ, µ; ε), integrating over the sphere, and using the or-
thonormality relation (3.7).

We nownote the usefulness of spheroidal harmonic trans-
forms in the solution of the invertibility principle (2.13). Sub-
stituting (3.10) and its companion for ψ into (2.13), and then

using (3.1), we immediately obtain

ψmn = −
a2qmn

αmn(ε) , (3.11)

which provides the spectral space algebraic inversion of the
potential vorticity qmn to the streamfunction ψmn . �e sim-
ple, convenient form of (3.11) depends on the formulation of
the invertibility principle (2.13) as a relation between ψ and
q rather than a relation between h and q. Since gh = 2Ωµψ,
the relation between h and q is more complicated and not so
easily solved by transformmethods. �us, in the formulation
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Table 4. As in Table 2, but for ε = 1, 000.

Eigenvalues: αmn(1, 000)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 602.183 552.201 503.546 455.816 408.737 362.123
9 550.643 499.180 448.973 399.674 351.039 302.896
8 497.723 444.859 393.187 342.403 292.289 242.688
7 443.487 389.289 336.225 284.029 232.506 181.507
6 387.989 332.515 278.124 224.580 171.706 119.367
5 331.278 274.578 218.915 164.079 109.908 56.2790
4 273.396 215.515 158.629 102.550 47.1312
3 214.381 155.358 97.2930 40.0158
2 154.268 94.1385 34.9330
1 93.0869 31.8832
0 30.8666

Dimensionless Frequencies: νmn(1, 000)/(2Ω)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 0.0 0.00181094 0.00397183 0.00658161 0.00978623 0.0138075

(0.013779)
9 0.0 0.00200328 0.00445461 0.00750612 0.0113947 0.0165073

(0.011367) (0.016472)
8 0.0 0.00224790 0.00508664 0.00876161 0.0136851 0.0206026

(0.0087377) (0.013649) (0.020563)
7 0.0 0.00256879 0.00594839 0.0105623 0.0172039 0.0275471

(0.0059307) (0.010529) (0.017156) (0.027532)
6 0.0 0.00300738 0.00719104 0.0133583 0.0232957 0.0418877

(0.00299800) (0.0071660) (0.013311) (0.023246) (0.042244)
5 0.0 0.00364195 0.00913596 0.0182839 0.0363940 0.0888430

(0.0036284) (0.0090976) (0.018215) (0.036556) (0.11507)
4 0.0 0.00464005 0.0126080 0.0292540 0.0848694

(0.0046186) (0.012542) (0.029237) (0.12515)
3 0.0 0.00643674 0.0205565 0.0749705

(0.0063967) (0.020441) (0.13645)
2 0.0 0.0106226 0.0572525

(0.010523) (0.14907)
1 0.0 0.0313645

(0.16309)

of quasi-geostrophic theory on the sphere, it is preferable to
express the invertibility principle as a relation between ψ and
q, and to partition the �ow into nondivergent and irrotational
components rather than geostrophic and ageostrophic com-
ponents. �is avoids the computation of geostrophic veloci-
ties at and near the equator.

4. Quasi-geostrophic Rossby-Haurwitz waves

Linearized Rossby-Haurwitz waves on a resting basic state are
governed by (2.13) and the linearized version of (2.12). A rest-

ing basic state was chosen for simplicity and ease of com-
parison with shallow water primitive equation results, but it
should be noted that the results shown here can also easily be
extended to the case of a basic zonal �ow with constant an-
gular velocity. As is easily con�rmed through the use of (3.1),
the solutions for given values of m, n, and ε are

q(λ, µ, t) = (2Eαmn(ε)
a2

)
1/2

Smn(ε; µ)e i[mλ+νmn(ε)t] (4.1)
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Table 5. As in Table 2, but for ε = 10, 000.

Eigenvalues: αmn(10, 000)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 2042.66 1854.18 1666.80 1480.43 1295.02 1110.51
9 1853.07 1663.50 1475.01 1287.52 1100.97 915.323
8 1662.41 1471.75 1282.16 1093.55 905.889 719.107
7 1470.67 1278.94 1088.25 898.551 709.774 521.871
6 1277.87 1085.07 893.309 702.515 512.637 323.625
5 1084.01 890.164 697.330 505.455 314.487 124.375
4 889.116 694.219 500.325 307.379 115.329
3 693.183 497.247 302.302 108.294
2 496.221 299.256 103.268
1 298.240 100.253
0 99.2481

Dimensionless Frequencies: νmn(10, 000)/(2Ω)
n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
10 0.0 0.000539321 0.00119991 0.00202644 0.00308875 0.00450242

(0.0044992)
9 0.0 0.000601141 0.00135593 0.00233007 0.00363315 0.00546255

(0.0036303) (0.0054587)
8 0.0 0.000679462 0.00155987 0.00274335 0.00441555 0.00695307

(0.0027410) (0.0044116) (0.0069485)
7 0.0 0.000781898 0.00183781 0.00333871 0.00563560 0.00958091

(0.0018361) (0.0033355) (0.0056305) (0.0095802)
6 0.0 0.000921596 0.00223887 0.00427037 0.00780279 0.0154500

(0.00092084) (0.0022365) (0.0042656) (0.0077971) (0.015521)
5 0.0 0.00112339 0.00286808 0.00593524 0.0127191 0.0402010

(0.0011221) (0.0028644) (0.0059277) (0.012746) (0.078057)
4 0.0 0.00144047 0.00399740 0.00975994 0.0346833

(0.0014385) (0.0039906) (0.0097593) (0.081982)
3 0.0 0.00201107 0.00661590 0.0277024

(0.0020071) (0.0066038) (0.086147)
2 0.0 0.00334162 0.0193670

(0.0033317) (0.090556)
1 0.0 0.00997475

(0.095215)

and

ψ(λ, µ, t) = −( 2a2E
αmn(ε))

1/2
Smn(ε; µ)e i[mλ+νmn(ε)t] (4.2)

where E is a normalization constant and

νmn(ε) = 2Ωm
αmn(ε) (4.3)

is the Rossby-Haurwitz wave frequency. Note that in this sec-
tion q and ψ are now the physical space �elds corresponding

to a single spheroidal harmonic mode. Also note that the spe-
cial case ε = 0, for which αmn(0) = n(n + 1), leads to the
classical nondivergent barotropic model result ψ(λ, µ, t) ∼
Pm
n (µ) exp{i[mλ + νmn(0)t]} with νmn(0) = 2Ωm/[n(n +

1)]. Although the monochromatic wave given by (4.1) and
(4.2) has been derived as a solution of the linearized PV equa-
tion, it is also a solution of the nonlinear PV equation (2.12).
To see this, note that since the solution (4.1) for the q �eld
and the solution (4.2) for the ψ �eld di�er only by a constant
factor, the isolines of ψ are always parallel to the isolines of
q, which means that the Jacobian term in (2.12) vanishes. In
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Figure 1. Dimensionless Rossby-Haurwitz wave frequencies, νmn(ε)/2Ω, as a function of zonal wavenumber m for ε =
0, 10, 100, 1000, 10000.
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other words, (4.1) and (4.2) satisfy both the linear dynamical
equations and the nonlinear dynamical equations. �is result
is a generalization of the results obtained by Craig (1945) and
Neamtan (1946) for the nondivergent barotropic model (i.e.,
the ε = 0 case).

Using the eigenvalues from the top half of Tables 2–5 in
the Rossby-Haurwitz frequency formula (4.3), we obtain the
dimensionless frequencies displayed in the bottom half of
these tables and plotted in Fig. 1. Also displayed in parenthe-
ses in the bottom half of Tables 2–5 are the Rossby-Haurwitz
wave frequencies computed by Longuet-Higgins (1968) for
the shallow water primitive equations. �ese exact values
are taken from Table 5 of Longuet-Higgins’ paper. A care-
ful inspection of Tables 2–5 shows that the quasi-geostrophic
Rossby-Haurwitz wave frequencies (4.3) are very good ap-
proximations to the primitive equation frequencies, with the
exception of low zonal wavenumber sectoral harmonics, i.e.,

small ∣m∣ for n − ∣m∣ = 0. For example, in the case ε = 10, the
largest errors are for n = m = 1 (34% error) and n = m = 2
(9.9% error). One reason for these larger errors in the low
zonal wavenumber sectoral harmonics is that the h and ψ
�elds vary as slowly as 2Ωµ, so that the assumptions involved
in approximating the linear balance relation (2.9) by the lo-
cal linear balance relation (2.11) begin to break down. A sec-
ond reason is that, in the primitive equation model, the low
zonal wavenumber sectoral harmonics involve a combination
of gravity wave dynamics and potential vorticity dynamics,
and the quasi-geostrophic model is only able to accurately
capture the potential vorticity part of the dynamics.

�e streamfunction solution (4.2) contains all the infor-
mation on the rotational part of the �ow and on the devia-
tions of the �uid depth. �us, using (2.7) and (2.11) for given
values ofm, n, and ε, the Rossby-Haurwitz wave solution can
also be written as

⎛
⎜⎜
⎝

uψ(λ, µ, t)
vψ(λ, µ, t)
h(λ, µ, t)

⎞
⎟⎟
⎠
= ( 2E

αmn(ε))
1/2 ⎛
⎜⎜
⎝

−(1 − µ2)1/2 S′mn(ε; µ)
im(1 − µ2)−1/2 Smn(ε; µ)

ag−12ΩµSmn(ε; µ)

⎞
⎟⎟
⎠
e i[mλ+νmn(ε)t] (4.4)

where S′mn = dSmn/dµ. From (4.4) we can show that every Rossby-Haurwitz wave eigenfunction has the same total energy, i.e.,

1
8π ∫ 1

−1 ∫
2π

0
(uψuψ∗ + vψvψ∗ + g

h̄
hh∗) dλ dµ

=
E

2αmn
∫ 1

−1
[(1 − µ2)S′2mn +

m2

1 − µ2
S2mn + εµ

2S2mn] dµ

=
E
2 ∫ 1

−1
S2mndµ = E ,

(4.5)

where the second equality follows from an integration by
parts and the use of (3.3), and where the third equality fol-
lows from the orthonormality relation (3.8). �e normaliza-
tion constant E introduced in (4.1) and (4.2) can now be in-
terpreted as the globally integrated total energy per unit mass
for each Rossby-Haurwitz wave mode. Note that the condi-
tion n ≫ ε 1

2 , which is the condition that the spheroidal har-
monics are well-approximated by the spherical harmonics, is
also the condition that most of the energy is in kinetic form.
With this energy normalization, each Rossby-Haurwitz wave
eigenfunction has a di�erent potential enstrophy. From (4.1)
and (3.7) we can easily show that

1
8π ∫ 1

−1 ∫
2π

0
qq∗ dλ dµ = Eαmn(ε)

a2
, (4.6)

so that the potential enstrophy of a particular Rossby-
Haurwitz wave eigenfunction is proportional to the
spheroidal harmonic eigenvalue αmn(ε), which, as shown
in Tables 2–5, increases with n for �xedm and increases with
∣m∣ for �xed n − ∣m∣.

In the very early days of numerical weather prediction,
forecasts were made over a regional domain using the nondi-
vergent barotropic model. As computer power increased, the
barotropic model domain became nearly hemispheric. When
these nearly hemispheric forecasts were compared to observa-
tions, it was soon noticed (Wol� 1958; Cressman 1958; Wiin-
Nielsen 1959) that the nondivergent model produced an er-
roneous westward propagation of ultralong waves. As dis-
cussed by Phillips (2000), this error was initially reduced by
“arti�cially holding those wavenumbers �xed during the inte-
gration. Later, Cressman (1958) obtained a slightly better er-
ror reduction by introducing an empirical correction for the
divergence that can be present in a barotropic model with a
free surface." Phillips also noted that “it is not easy to think
of an improvement to the empirical corrections introduced
by Cressman." �is issue can now be reexamined by writing
(4.3) in the form

νmn(ε) = (n(n + 1)αmn(ε) )(
2Ωm

n(n + 1)) , (4.7)
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Figure 2. Isolines of the ‘‘quasi-geostrophic frequency correction factor," defined as n(n + 1)/αmn(ε), for ε = 10, 100, 1000, 10000.

and noting that the factor n(n+ 1)/αmn(ε)modi�es the non-
divergent Rossby-Haurwitz wave frequency 2Ωm/[n(n + 1)]
to the quasi-geostrophic Rossby-Haurwitz wave frequency
νmn(ε). �e “quasi-geostrophic frequency correction fac-
tor" n(n + 1)/αmn(ε) represents a theoretical alternative to
the empirical correction factor of Cressman. Isolines of
this frequency correction factor in (m, n)-space for ε =
10, 100, 1000, 10000 are presented in the four panels of Fig. 2.

For ε = 10 the correction factor is near unity except for the ul-
tralong wavesm = 1, 2, 3. As ε increases, the correction factor
becomes signi�cantly less than unity over a growing region
of wavenumber space. �us, the quasi-geostrophic Rossby-
Haurwitz wave frequency νmn(ε) is consistently smaller than
the corresponding barotropic frequency. Since the spheroidal
harmonic eigenvalue αmn(ε) arises from the operator ∇2

−

εµ2/a2, while the spherical harmonic eigenvalue n(n + 1)
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arises from the operator∇2, the factor n(n+1)/αmn(ε) arises
because the quasi-geostrophic model makes a mathematical
distinction between vorticity and potential vorticity while the
barotropic model does not. We can summarize this discus-
sion by noting that the whole problem of erroneous westward
propagation of ultralong waves could have been avoided if
early attempts at prediction using barotropicmodels had been
based on the formulation (2.12)–(2.13) rather than the nondi-
vergent barotropic formulation.

During the �nal review stage of this paper, we were
made aware of recent work of Verkley (2009), who has in-
dependently reached many of the conclusions given here in
Section 4. In particular, he has presented a detailed com-
parison of the eigenvalues and eigenfunctions of the quasi-
geostrophic Rossby-Haurwitz waves with the corresponding
primitive equation results of Longuet-Higgins (1968). He has
also presented an interesting argument that legitimizes, to
some extent, the common practice of approximating µ2 in
(2.13) by a constant. Verkley’s results extend those of Wun-

derer (2001), who has compared the Rossby-Haurwitz eigen-
values for the linear balance model (see also Moura 1976)
and the quasi-geostrophic model with those calculated from
the hemispheric semigeostrophic theory ofMagnusdottir and
Schubert (1991).

5. Quasi-geostrophic turbulence on the sphere

�e total energy principle, obtained by multiplying (2.12) by
−ψ and integrating over the sphere, is dE/dt = 0, where

E =
1
8π ∫ 1

−1 ∫
2π

0
(∇ψ ⋅ ∇ψ + εµ2

a2
ψ2) dλ dµ

= −
1
4π ∫ 1

−1 ∫
2π

0
1
2ψq dλdµ

(5.1)

is the total energy. Using the spheroidal harmonic expansions
forψ(λ, µ, t) and q(λ, µ, t), we can express E in spectral space
as

E = −
1
4π ∫ 1

−1 ∫
2π

0
1
2
⎛
⎝
∞

∑
m=−∞

∞

∑
n=∣m∣

ψmnSmn
⎞
⎠
⎛
⎝

∞

∑
m′=−∞

∞

∑
n′=∣m′∣

q∗m′n′S∗m′n′
⎞
⎠ dλdµ

= −

∞

∑
m=−∞

∞

∑
n=∣m∣

∞

∑
m′=−∞

∞

∑
n′=∣m′∣

1
2ψmnq∗m′n′ (

1
4π ∫ 1

−1 ∫
2π

0
SmnS∗m′n′dλdµ)

= −

∞

∑
m=−∞

∞

∑
n=∣m∣

1
2ψmnq∗mn =

∞

∑
m=−∞

∞

∑
n=∣m∣

αmn

2a2
∣ψmn ∣2 =

∞

∑
m=−∞

∞

∑
n=∣m∣

Emn , (5.2)

where we have used the orthonormality relation (3.7) to ob-
tain the �rst equality in the last line, the invertibility principle
q∗mn = −a−2αmnψ∗mn to obtain the second equality in the last
line, and where we have de�ned

Emn =
αmn

2a2
∣ψmn ∣2 . (5.3)

Equation (5.2) is the “Parseval relation" for the total energy.
It allows us to compute the total energy of the atmosphere
either by an integral of 1

2 (∇ψ ⋅ ∇ψ + εa−2µ2ψ2) over physi-

cal space or by a sum of 1
2 a
−2αmn ∣ψmn ∣2 over spheroidal har-

monic wavenumber space.
�e potential enstrophy principle, obtained by multiply-

ing (2.12) by q and integrating over the sphere, is dZ/dt = 0,
where

Z =
1
4π ∫ 1

−1 ∫
2π

0
1
2 q

2 dλdµ (5.4)

is the potential enstrophy. Using the spheroidal harmonic ex-
pansion for q(λ, µ, t), we can express Z in spectral space as

Z =
1
4π ∫ 1

−1 ∫
2π

0
1
2
⎛
⎝
∞

∑
m=−∞

∞

∑
n=∣m∣

qmnSmn
⎞
⎠
⎛
⎝

∞

∑
m′=−∞

∞

∑
n′=∣m′∣

q∗m′n′S∗m′n′
⎞
⎠ dλdµ

=

∞

∑
m=−∞

∞

∑
n=∣m∣

∞

∑
m′=−∞

∞

∑
n′=∣m′∣

1
2 qmnq∗m′n′ (

1
4π ∫ 1

−1 ∫
2π

0
SmnS∗m′n′dλdµ)

=

∞

∑
m=−∞

∞

∑
n=∣m∣

1
2 qmnq∗mn =

∞

∑
m=−∞

∞

∑
n=∣m∣

Zmn , (5.5)
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where we have again used the orthonormality relation (3.7)
to obtain the last line in (5.5). Using (5.3), this can also be
written as

Zmn =
1
2 ∣qmn ∣2 = αmn

a2
Emn . (5.6)

Equation (5.5) is the “Parseval relation" for the potential en-
strophy. It allows us to compute the total potential enstrophy
either by an integral of 1

2 q
2 over physical space or by a sum of

1
2 ∣qmn ∣2 over spheroidal harmonic wavenumber space.

As discussed by Charney (1971), energy moves toward
lower wavenumber while potential enstrophy moves toward
higher wavenumber. Because of this cascade in opposite di-
rections, potential enstrophy is more subject to small scale
dissipation, and hence can be selectively decayed while en-
ergy is nearly conserved even in the presence of dissipa-
tion. However, as energy moves to lower wavenumber, the
e�ects of the earth’s sphericity become important, and large-
scale structures begin to elongate in the east-west direc-
tion. �is “Rhines barrier" has traditionally been thought
of in a one-dimensional wavenumber (or total wavenumber)
space. For barotropic �ows, the concept has been extended
to two-dimensional wavenumber space by Vallis and Mal-
trud (1993) and Huang and Robinson (1998). As the en-
ergy cascades towards smaller wavenumbers, an “anisotropic
Rhines barrier" is reached, so that the cascade tends to pro-
ceed farther in the region of wavenumber space where the
zonal wavenumber is small. �e spherical quasi-geostrophic
theory presented here provides a framework for extending
these concepts from two-dimensional wavenumber space to
three-dimensional wavenumber space. Instead of viewing
the “anisotropic Rhines barrier" as a line in two-dimensional
wavenumber space (m, n), we can view the barrier as a sur-
face in three-dimensional wavenumber space (m, n, ε).

To quantify these ideas, we �rst note that (2.12) con-
tains nonlinear advection of q and a linear term associated
with Rossby-Haurwitz waves.�e Rossby-Haurwitz wave fre-
quency is given by 2Ωm/αmn(ε). �e turbulent frequency is
given by a−1 [αmn(ε)]1/2 Vrms, where Vrms is the root-mean-
square velocity. �e dynamics is wavelike if

2Ωm/αmn(ε)≫ a−1 [αmn(ε)]1/2 Vrms ,

while it is dominated by turbulence if

2Ωm/αmn(ε)≪ a−1 [αmn(ε)]1/2 Vrms .

�e anisotropic Rhines barrier is de�ned by equating the two
time scales, which, a�er some rearrangement, leads to

m
[αmn(ε)]3/2

=
Vrms

2Ωa
. (5.7)

For a given Vrms/(2Ωa) and a given ε, (5.7) de�nes a curve in
the spheroidal harmonic wavenumber plane (m, n). Several
such curves, for 2Ωa = 929 ms−1 and for di�erent values of
Vrms, are displayed in Fig. 3. For a given Vrms, the region be-
low the appropriate Rhines curve is wavelike, while the region

above the curve is dominated by turbulence. By superpos-
ing these �gures one can visualize a three-dimensional Rhines
surface that dictates the lowest wavenumbers to which a tur-
bulent �ow can cascade.

6. Concluding remarks

In the historical development of quasi-geostrophic theory
(see Phillips 1963 for a review) the midlatitude β-plane ver-
sion has played the lead role. However, in the modern era
of global climate models, a fully spherical version of quasi-
geostrophic theory is useful for a variety of purposes. We
have discussed a form of shallowwater quasi-geostrophic the-
ory that can describe low Rossby number �ows on the en-
tire sphere—a form that dates back to the pioneering work of
Kuo (1959) and Charney and Stern (1962). �e theory is con-
cisely stated by the potential vorticity conservation relation
(2.12) and the invertibility principle (2.13). Except for sectoral
modes of low zonal wavenumber, this theory accurately ap-
proximates the Rossby-Haurwitz wave spectrum associated
with the primitive equations.�is makes the theory (or its ex-
tension to the continuously strati�ed case) useful for applica-
tion to such problems as Rossby-Haurwitzwave dispersion on
the sphere and the vertical propagation of Rossby-Haurwitz
waves into the stratosphere.

�e global quasi-geostrophic theory presented here has
incorporated several important ingredients:

(i) To obtain an invertibility principle from (2.8) we have
chosen to leave∇2ψ unchanged and to approximate gh
by 2Ωµψ, rather than leaving gh unchanged and ap-
proximating ∇2ψ in terms of gh.

(ii) �e �ow partitioning is between nondivergent
and irrotational components rather than between
geostrophic and ageostrophic components.

(iii) Spheroidal harmonics are introduced and utilized to
transform the theory into spectral space, an extension
that simpli�es the invertibility principle and facilitates
the understanding of Rossby-Haurwitz waves and the
cascades of energy and potential enstrophy.

To the authors’ knowledge, all three of these ingredients have
not been fully brought together before to exploit the advan-
tages of global quasi-geostrophic theory, particularly ingre-
dient (iii). Ingredients (i) and (ii) are not new and can be
found together in previous literature, such as the classic pa-
pers of Kuo (1959) and Charney and Stern (1962) and also
the more recent work of Verkley (2009). Although the works
of Kuo and Verkley do recognize a connection of this the-
ory with spheroidal harmonics, neither of these works fully
develop and utilize this important connection. We also note
that spheroidal harmonics are brie�y discussed by Longuet-
Higgins (1965, 1968) in the context of asymptotic approxi-
mations to Laplace’s tidal equations and by Dickinson (1968)
in the context of the vertical propagation of planetary waves
from the troposphere into the stratosphere.
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Figure 3. Anisotropic Rhines curves in the wavenumber plane of spheroidal harmonics Smn(ε; λ, µ) = Smn(ε; µ)e imλ for select ε, where
m is the zonal wavenumber and n is the total wavenumber. The curves are based on (5.7), with the values of Vrms labeled in m s−1 to the
right of the diagonal.

It is interesting to note that Matsuno (1970) has formu-
lated a linear version of global quasi-geostrophic theory that
does not use ingredients (i) or (ii). In that work, the �ow par-
tition is into geostrophic and ageostrophic components, and
the invertibility principle is expressed in terms of the geopo-
tential rather than the streamfunction. To the authors’ knowl-
edge, a full nonlinear version ofMatsuno’smodel has not been
developed. Finally, we refer to thework ofKaroly andHoskins
(1982), Mak (1991), Marshall and Molteni (1993), and �eiss
(2004), who studied the equatorward energy cascade, crit-
ical latitude, and the predominance of cyclonic vortices in
geostrophic turbulence. �e theories presented in these pa-
pers are global to a certain extent, but do not include the full

variability of the Coriolis parameter since their invertibility
principles use a constant Rossby length rather than the εµ2/a2
form of (2.13).

Some of the issues that have arisen here have also played
important roles in the history of numerical weather predic-
tion. Not long a�er the encouraging results obtained by Char-
ney et al. (1950) using the barotropic model, Charney (1954)
constructed a 3-level quasi-geostrophic model for the numer-
ical prediction of cyclogenesis. As shown by Phillips (1958,
2000), this model failed to produce an accurate forecast of
storm location for an interesting example of cyclogenesis on
the east coast of the United States. In his analysis of the cause
of this failure, Phillips concluded that the problem was in the
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use of geopotential rather than streamfunction. For example,
in the shallowwater context, the formula for the potential vor-
ticity anomaly, q = ∇2ψ − (2Ωµ/h̄)h, and the conservation
law for q can be approximated in two ways:

(A) Leave the (2Ωµ/h̄)h term in its present form, approxi-
mate the vorticity ∇2ψ by its geostrophic value (i.e., in
terms of∇2h), and advect q using the geostrophicwind.

(B) Leave the ∇2ψ term in its present form, approximate
the (2Ωµ/h̄)h term by (εµ2/a2)ψ, and advect q using
the nondivergent wind (uψ , vψ).

Method (A), the conventional method used by Charney
(1954), treats the initial mass �eld as “exact", while the ac-
curacy of the initial wind �eld is limited by the geostrophic
approximation. In contrast, method (B) treats the initial non-
divergent wind as “exact", while the accuracy of the initial
mass �eld is limited by the local linear balance approxima-
tion gh = 2Ωµψ. Phillips pointed out that ordinary scale
analysis is not useful in deciding which method is best. How-
ever, he argues that experience shows that method (B) seems
to be best because typical atmospheric �ow patterns are such
that it is more important to have a good representation of the
wind rather than the temperature. In fact, the failure of Char-
ney’s (1954) model to accurately forecast storm location dur-
ing cyclogenesis can be attributed to the erroneously large PV
advection by the geostrophic winds. Phillips concludes that
“quasi-geostrophic models might have been more productive
in the United States if they had used streamfunction in place
of geopotential." Unfortunately, “this possibility for improve-
ment in the quasi-geostrophic model was realized too late,"
since interest was shi�ing to the use of the primitive equa-
tions. Concerning the relative merits of methods (A) and (B),
we have reached the same conclusion as Phillips, but our ar-
guments deal with the extension of quasi-geostrophic theory
to the entire sphere rather than the forecast accuracy of mid-
latitude cyclogenesis.�us, there are at least two good reasons
to prefer method (B) over method (A).

In closing we note that a wide variety of �nite di�erence
and spectral methods can be used to solve (2.12) and (2.13).
In terms of spectral methods we have the choice of using ei-
ther spheroidal harmonics or spherical harmonics as basis
functions. �e advantage of the former is that the spheroidal
harmonic transform of (2.13) is a simple (i.e., diagonal) alge-
braic relation between the spectral coe�cients of ψ and q, as
given by (3.11). In contrast, the spherical harmonic transform
of (2.13) results in a tridiagonal algebraic system relating the
spectral coe�cients of ψ and q. �us, the use of spheroidal
harmonic basis functions may be preferable in the shallow
water context. However, in a multilayer model of a contin-
uously strati�ed �uid we obtain an invertibility principle of
the form (2.13) for each vertical mode, with each mode hav-
ing a distinct value of ε. �en, for e�cient numerical inte-
grations, we would need to precompute and store spheroidal
harmonic basis sets for each ε. �us, for multilayer models,
it is probably preferable to use a spherical harmonic basis set,

even though the resulting algebraic form of (2.13) is tridiag-
onal rather than diagonal. However, it should be noted that,
even though an e�cient numerical integration might use a
spherical harmonic basis, the diagnostic analysis of energy
and potential enstrophy cascades could be more insightful in
the context of spheroidal harmonic basis functions. Further
discussion and applications of the continuously strati�ed ver-
sion of quasi-geostrophic theory on the sphere are given in
Silvers (2007). A detailed analysis of the appropriate spectral
methods for the strati�ed case will be presented in a forth-
coming paper.
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Appendix A: Calculation of the eigenvalues and
eigenfunctions of the spheroidal wave equation

�e eigenvalues αmn(ε) and the eigenfunctions Smn(ε; µ)
of the spheroidal wave equation (3.3) are computed using a
method adapted from Hodge (1970). �e key step of this
method is to consider the associated Legendre expansion

Smn(ε; µ) =
∞

∑
r=0,1

dmn
r (ε)Pm

m+r(µ), (A.1)

where the summation begins at r = 0 and runs over even in-
tegers if n − ∣m∣ is even, or begins at r = 1 and runs over odd
integers if n− ∣m∣ is odd, and where dmn

r (ε) are the expansion
coe�cients of Smn(ε; µ) in terms of the associated Legendre
functions Pm

n (µ). �e associated Legendre functions satisfy
the di�erential equation

d
dµ
[(1 − µ2)dP

m
n

dµ
] + [n(n + 1) − m2

1 − µ2
] Pm

n = 0. (A.2)

and the orthonormality condition

1
2 ∫

1

−1
Pm
n (µ)Pm

n′(µ) dµ

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
(2n + 1)

(n +m)!
(n −m)! n′ = n

0 n′ ≠ n.

(A.3)

Note that Smn(ε; µ) and Pm
n (µ) are both even functions about

µ = 0 if n − ∣m∣ is an even integer, while they are both odd
functions about µ = 0 if n − ∣m∣ is an odd integer. Substitut-
ing the associated Legendre expansion (A.1) into the ordinary
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di�erential equation (3.3), and then using (A.2), we obtain
∞

∑
r=0,1

dmn
r (ε)[αmn(ε) − (m + r)(m + r + 1)

− εµ2]Pm
m+r(µ) = 0.

(A.4)

Since the associated Legendre functions satisfy the recurrence
relation

Pm
n+1(µ) =

(2n + 1)µPm
n (µ) − (n +m)Pm

n−1(µ)
(n −m + 1) , (A.5)

or equivalently

µPm
n (µ) =

(n +m)Pm
n−1(µ) + (n −m + 1)Pm

n+1(µ)
(2n + 1) ,

we can easily show that

µ2Pm
n (µ) =

(n −m + 1)(n −m + 2)
(2n + 1)(2n + 3) Pm

n+2(µ)

+

2n(n + 1) − 2m2
− 1

(2n − 1)(2n + 3) Pm
n (µ)

+

(n +m − 1)(n +m)
(2n − 1)(2n + 1) Pm

n−2(µ).

(A.6)

When (A.6) is used in the last term on the le� hand side
of (A.4), we immediately conclude that the expansion coe�-
cients dmn

r (ε)must satisfy the three term recurrence relation

Am
r (ε)dmn

r+2(ε) + [Bm
r (ε) − αmn(ε)] dmn

r (ε) + Cm
r (ε)dmn

r−2(ε) = 0 for r ≥ 0, (A.7)
where

Am
r (ε) = (

(2m + r + 2)(2m + r + 1)
(2m + 2r + 3)(2m + 2r + 5)) ε, (A.8)

Bm
r (ε) = (m + r)(m + r + 1) + (

2(m + r)(m + r + 1) − 2m2
− 1

(2m + 2r − 1)(2m + 2r + 3) ) ε, (A.9)

Cm
r (ε) = (

r(r − 1)
(2m + 2r − 3)(2m + 2r − 1)) ε. (A.10)

When the system (A.7) for the expansion coe�cients dmn
r (ε)

is written in matrix form, the nonzero elements of the matrix
are seen to be on the main diagonal and a distance two above
and below the main diagonal. To convert the problem (A.7)
to a simple tridiagonal form we introduce the reindexing

Dq = Cm
2q+s(ε), Eq = Bm

2q+s(ε),

Fq = Am
2q+s(ε), aq = dmn

2q+s(ε), (A.11)

where s = 0 if n − ∣m∣ is even and s = 1 if n − ∣m∣ is odd. For
simplicity we have omitted the relevant superscripts from Dq ,
Eq , Fq , and aq . Using these de�nitions, (A.7) takes the tridi-
agonal form

Dqaq−1 + (Eq − α) aq + Fqaq+1 = 0 for q ≥ 0. (A.12)

We can now convert (A.12) to a tridiagonal, symmetricmatrix
problem by considering the new variable bq , de�ned in terms
of aq by

aq = (
D1D2D3⋯Dq

F0F1F2⋯Fq−1
)
1/2

bq . (A.13)

Substituting (A.13) into (A.12) and multiplying the result by
[(F0F1F2⋯Fq−1)/(D1D2D3⋯Dq)]1/2, we obtain

(DqFq−1)1/2 bq−1 + (Eq − α) bq
+ (Dq+1Fq)1/2 bq+1 = 0

(A.14)

for q ≥ 0, which can also be written in the matrix form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E0 (D1F0)1/2 0 0 ⋯

(D1F0)1/2 E1 (D2F1)1/2 0 ⋯

0 (D2F1)1/2 E2 (D3F2)1/2 ⋯

0 0 (D3F2)1/2 E3 ⋯

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b0
b1
b2
b3
⋅

⋅

⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b0
b1
b2
b3
⋅

⋅

⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A.15)
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To summarize, the eigenvalues αmn(ε) and eigenfunc-
tions Smn(ε; µ) for a given ε are computed as follows. For a
particular zonal wavenumber m, �rst choose s = 0 and then
compute Dq , Eq , Fq from (A.8)–(A.11). A�er solving the sym-
metric, tridiagonal eigensystem problem (A.15), convert bq to
aq via (A.13), and then aq to dmn

2q+s via the last entry in (A.11).
�is whole procedure is then repeated for s = 1, the net re-
sult being that we have found all the eigenvalues αmn(ε) and
expansion coe�cients dmn

r (ε) for a given zonal wavenumber
m. Since the eigenfunctions Smn(ε; µ) are only determined to
within a multiplicative constant, the �nal step is to normalize
them in such a way that (3.8) is satis�ed.

In practice the number of terms in the summation on the
right hand side of (A.1) and the number of rows and columns
in (A.15) must be �nite. Since our global quasi-geostrophic
model uses triangular truncation with maximum wavenum-
ber M, the sums in (3.10) are over ∣m∣ ≤ M and n ≤ M, and
we must accurately compute the eigenvalues αmn(ε) and the
eigenfunctions Smn(ε; µ) over this range of m and n. �us,
the upper limit of the sum in (A.1) must be larger than M.
However, it need only be slightly larger than M because of
the rapid convergence of the associated Legendre expansion
(A.1).

Appendix B: Asymptotic forms of the eigenvalues
and eigenfunctions for large epsilon

To derive asymptotic forms for the eigenvalues αmn(ε) and
eigenfunctions Smn(µ; ε) we �rst note that the substitution
Smn(µ; ε) = (1 − µ2)m/2Umn(µ; ε) transforms the ordinary
di�erential equation (3.3) to

(1 − µ2)d
2Umn

dµ2
− 2(m + 1)µ dUmn

dµ

+ [αmn −m(m + 1) − εµ2]Umn = 0.

(B.1)

De�ning y = ε1/4µ, (B.1) becomes

(ε1/2 − y2)d
2Umn

dy2
− 2(m + 1)y dUmn

dy

+ [αmn −m(m + 1) − ε1/2 y2]Umn = 0.

(B.2)

When ε →∞ and y2 ≪ ε1/2, (B.2) is approximated by

d2Umn

dy2
+ (ε−1/2αmn − y2)Umn = 0, (B.3)

an equation that plays a central role in equatorial β-plane the-
ory (Matsuno 1966). Bounded solutions exp (− 1

2 y
2)Hr(y)

exist when ε−1/2αmn = 2r + 1 for r = 0, 1, 2, . . ., where Hr(y)
is the Hermite polynomial of order r. �us, as ε → ∞,
the spheroidal function Smn(µ; ε) becomes proportional to
exp (− 1

2 y
2)Hr(y). To determine r we argue as follows. For

givenm, n, Smn(µ; ε) has the same number of zeroes no mat-
ter what the value of ε. Since Smn(µ; 0) = Pmn(µ), and since

the associated Legendre function Pmn(µ) has n−m zeroes in
the range −1 < µ < 1, Smn(µ; ε) also has n − m zeroes in this
range. Since the Hermite polynomial Hr(y) has r zeroes in
the range −∞ < y <∞, we conclude that Smn(µ; ε) becomes
proportional to exp (− 1

2 y
2)Hn−m(y) as ε →∞. In summary,

Smn(µ; ε) ∼ exp(− 12 ε
1/2µ2)Hn−m(ε1/4µ) (B.4)

and
αmn(ε) ∼ ε1/2 [1 + 2(n −m)] (B.5)

as ε → ∞. It should be noted that, while the derivation of
(B.5) shows the connection with equatorial β-plane theory,
the asymptotic formula (3.6) is considerably more accurate
than (B.5).
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