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Abstract
Seasonal tropical cyclone (TC) forecasting has evolved substantially since its commencement in the early 1980s. However, present operational
seasonal TC forecasting services still do not meet the requirements of society and stakeholders: current operational products are mainly basin-scale
information, while more detailed sub-basin scale information such as potential risks of TC landfall is anticipated for decision making. To fill this
gap and make the TC science and services move forward, this paper reviews recent research and development in seasonal tropical cyclone (TC)
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forecasting. In particular, this paper features new research topics on seasonal TC predictability in neutral conditions of El Niño–Southern
Oscillation (ENSO), emerging forecasting techniques of seasonal TC activity including Machine Learning/Artificial Intelligence, and multi-annual
TC predictions. We also review the skill of forecast systems at predicting landfalling statistics for certain regions of the North Atlantic, Western
North Pacific and South Indian oceans and discuss the gap that remains between current products and potential user's expectations. New
knowledge and advanced forecasting techniques are expected to further enhance the capability of seasonal TC forecasting and lead to more
actionable and fit-for-purpose products.
© 2023 The Shanghai Typhoon Institute of China Meteorological Administration. Publishing services by Elsevier B.V. on behalf of KeAi
Communication Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Seasonal forecasts of tropical cyclones (TCs) developed in
parallel for the Australian (Nicholls, 1979; 1984) and the North
Atlantic (Gray 1984a; 1984b) regions due in large part to a
newly-discovered relationship between the El Niño–Southern
Oscillation (ENSO) and TCs in these two basins. The first
hurricane outlook for the Atlantic basin relied on a statistical
model based upon three predictors (ENSO, the phase of the
Quasi-Biennial Oscillation, and sea-level pressure over the
Caribbean Sea). Both the predictors and the statistical model
evolved over time, as new statistical relationships were
discovered and prior predictors started to fail. While this
forecast product was the only hurricane outlook produced
annually until the late 1990s, the increased availability of
newer, longer and more complete datasets combined with
increased computing power and a better understanding of
hurricane variability provided an opportunity for motivated
groups or individuals to start producing these outlooks on a
regular basis using an ever-growing number of innovative
techniques. Nowadays, TC outlooks are realised as operational
seasonal TC forecasts at major modelling centres, through
various research groups and some private companies for all
basins supporting TC genesis (Camargo et al. 2007; Klotzbach
et al. 2019). While ENSO remains an important climate factor
modulating TC activity, and skillful prediction of the ENSO
state is still an integral part of TC forecasting at the seasonal
time scale for some basins, new climate factors have started to
emerge as potentially providing additional skill, in particular
during ENSO-neutral years. Forecast products covering mul-
tiple TC seasons are also now developed.

This paper aims to highlight recent advances in the field of
seasonal TC forecasting. Section 2 presents various sources of
seasonal TC predictability other than ENSO that have been
identified, thus providing predictability in ENSO-neutral con-
ditions for some basins. Section 3 provides an overview of
emerging advances in Machine Learning (ML), which have the
potential to improve upon existing forecasting techniques.
Section 4 presents an integrated and collaborative operational
activity for seasonal TC forecasts that has been running for
several years. Section 5 presents an overview of the ability of
current seasonal outlooks to forecast TC landfall, and Section 6
discusses the application of seasonal outlooks (or lack thereof).
Section 7 showcases a prototype of climate services for multi-
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annual TC forecasts developed in the context of the Copernicus
Climate Change Service (C3S) and discusses the origin of
Atlantic Multidecadal Variability (AMV), which has strong
implications for the ability of initialised climate models to
forecast TC activity at this timescale. We conclude with a
summary and offer some ideas for future initiatives in Section
8. For recent developments in operational forecast systems
related to TC activity, we refer the readers to the 10th Inter-
national Workshop on Tropical Cyclone report on seasonal
forecasting (Takaya et al. 2022).

2. Predictability in ENSO-neutral conditions

Traditionally, the prediction capability for seasonal TC ac-
tivity has predominantly relied on ENSO (Feng et al. 2020;
Gray 1984a; 1984b; Zhan et al. 2012 for review), which is the
dominant mode of tropical variability with widespread global
influences. More recent studies pointed out that ENSO flavour
(Central-Pacific type ENSO and East-Pacific type ENSO) and
transition are also important properties modulating the influ-
ence of ENSO on WNP TC activity (e.g., Choi et al. 2019). In
addition, recent studies have revealed new influences on sea-
sonal TC activity in various basins in ENSO-neutral condi-
tions, and thus new potential sources of predictability. This
section reviews recent findings of seasonal TC predictability in
ENSO-neutral conditions in the western North Pacific (WNP),
North Atlantic (NA) and southern Indian Ocean (SIO). It is
important to note that an ENSO neutral phase does not
necessarily mean that the large-scale circulation is completely
devoid of ENSO's influence, but rather that the influence of the
ENSO transition and non-ENSO climate phenomena become
more predominant (e.g., Hansen et al. 2022).
2.1. Predictability of TC activity over the WNP in ENSO-
neutral conditions
Several recent studies have shown a significant impact of
the Pacific Meridional Mode (PMM; Chiang and Vimont 2004)
on the interannual variability of WNP TC activity (Zhang et al.
2016c; Gao et al. 2020a; Liu et al. 2019; Takaya 2019). PMM
is an atmosphere–ocean coupled variability mode in the sub-
tropical North Pacific. These results were further confirmed by
Wu et al. (2021), who showed a robust influence of the PMM
on both TC genesis and tracks after accounting for the
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influence of decadal variability and ENSO. Positive phases of
the PMM increase TC activity by inducing anomalous cyclonic
winds and positive vorticity anomalies over the WNP.

The tropical North Atlantic (TNA; 0◦–20◦N, 80◦–10◦W;
Gao et al. 2020b) is another important driver of WNP TC ac-
tivity, which is somewhat independent of ENSO. Many studies
have documented significant correlations between TNA sea
surface temperature (SST) anomalies and both WNP cyclo-
genesis and landfalling events (Huo et al., 2015; Yu et al.,
2016; Gao et al., 2018). Gao et al. (2020b) also found a sig-
nificant positive correlation between spring TNA SST and the
autumn frequency of intense TCs landfalling over mainland
China in neutral ENSO conditions.

SSTs in the Indian Ocean (IO) and the western Pacific are
other contributors to seasonal TC activity in the WNP. Zhan
et al. (2019) quantified the contributions of SST anomalies in
the Indo-Pacific Oceans to the interannual variability of WNP
TC genesis frequency. They found that the spring SST gradient
between the southwestern Pacific and the western Pacific warm
pool and summer SST anomalies over the eastern IO pre-
dominantly contribute to the interannual variability of TC
genesis frequency compared to ENSO.

Takaya et al. (2021) also investigated seasonal TC activity in
the WNP in relation to IO basin (IOB; 20◦N–20◦S,
40◦E−100◦E) and Niño3.4 SSTs (Fig. 1). They suggested that
the IO mediates the delayed influence of preceding El Niño due
to IO warming following El Niño (Indo-western Pacific
Capacitor mode; Xie et al. 2016), and also modulates WNP TC
activity in summers that follow El Niño events. In addition, they
found that the combined effect of the IOB and Niño3.4 SSTs can
explain WNP TC activity (TC days, Fig. 1a), even in ENSO-
neutral phases. They further demonstrated that the Japan Mete-
orological Agency/Meteorological Research Institute-Coupled
Prediction System version 2 has the ability to replicate the IOB
Fig. 1. a) Scatterplot of the analysed (circles) and predicted (squares) TC densities
Colours indicate the TC density accumulated in the western North Pacific (WNP) re
numbers shown alongside circles or squares indicate years. b) Composites of observ
>+1.5 std. dev., (middle) an IOB index >0 and Niño3.4 index <−1 std. dev., and
Fig. 1a). Stippled regions are statistically significant at the 5% level using a bootstra
of the Asian summer monsoon one year ahead, Nature Communications, published
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and equatorial Pacific influence in ENSO-neutral summer
(June–August) forecasts starting from the end of April (one
month lead, Fig. 1a). A composite analysis also supported this
result (right column in Fig. 1b), indicating that there is moderate
predictability of seasonal TC activity in ENSO-neutral years.
2.2. Predictability of TC activity over the North Atlantic
in ENSO-neutral conditions
Over the North Atlantic, phenomena shown to recently
impact ENSO-neutral hurricane seasons include Rossby wave
breaking (RWB; Zhang et al. 2016a, 2017; Wang et al. 2020;
Papin et al. 2020; Jones et al. 2022) and the Indian Ocean
Dipole (IOD; Wood et al. 2020).

Zhang et al. (2016a, 2017) and Papin et al. (2020) showed
that while anticyclonic RWB events may be synoptic and
transient in nature, they have strong seasonal impacts on the
large-scale boreal summer (July–October) environment,
particularly on vertical wind shear (VWS). VWS tends to in-
crease along the downstream slope of midlatitude high poten-
tial vorticity streamers that penetrate the tropical environment.
This leads to an overall increase in VWS across the Atlantic
Main Development Region (MDR; 10◦N–20◦N; Goldenberg
and Shapiro, 1996), suppressing hurricane activity. Jones
et al. (2020) further showed that RWB accounted for the sec-
ond leading mode in July–September NA VWS variability
following ENSO. These studies suggest that RWB can partially
account for low activity Atlantic hurricane seasons, such as the
2013 season. This particular Atlantic hurricane season pro-
duced one of the lowest seasonal Accumulated Cyclone Energy
(ACE) values on record (36.1 × 104 kt2). Despite having
persistent neutral ENSO conditions throughout the summer, the
peak of the season (August–October) was characterised by
anomalously high VWS and reduced relative humidity (RH)
(TC days) with respect to Indian Ocean Basin (IOB) and Niño3.4 SST indices.
gion normalised by the climatological mean and standard deviation. Two-digit
ed and predicted TC density anomalies for summers with (left) a Niño3.4 index
(right) Group A minus Group B (groups shown with background colours in

p method (10,000 resamplings). Material from: Takaya et al. Skilful predictions
2021, Springer Nature.



Y. Takaya, L.-P. Caron, E. Blake et al. Tropical Cyclone Research and Review 12 (2023) 182–199
over most of the Atlantic MDR. Zhang et al. (2016a) associated
this anomalous season with above-normal RWB activity.

The above-mentioned environmental impacts of RWB on
NA TC activity are predictable on seasonal timescales (Wang
et al. 2020; Zhang et al. 2021; Jones et al. 2022). Zhang
et al. (2021) showed that extratropical baroclinic wave activ-
ity leading to RWB is predictable throughout the year and can
be predicted using current operational climate models. Using
an RWB-associated predictor, Jones et al. (2022) showed that
RWB can improve the skill of early-April NA TC forecasts as
wintertime RWB events can precondition the environment, in
association with the North Atlantic Oscillation, to induce more
wave breaking in the summer. Colorado State University
(CSU) very recently included RWB-related predictors in its
early-April outlook in the form of 200-hPa subtropical NA
zonal winds (Klotzbach et al. 2021; Klotzbach and Bell 2022).

Wood et al. (2020) suggested that the IOD may be another
source of seasonal TC predictability over the NA during neutral
ENSO phases. The IOD played a role in suppressing late-
season TC activity during the 2019 NA hurricane season
with ENSO-neutral conditions during August–October. By
modulating the Walker circulation, positive IOD phases (warm
western IO and cool eastern IO) suppress NA TC activity by
increasing VWS and reducing RH over the NA MDR, while
negative IOD phases are associated with more favourable
environmental conditions for NA TC activity. The added value
of including the IOD as a predictor of seasonal hurricane ac-
tivity in a statistical model has yet to be evaluated however.
2.3. Seasonal TC activity modulation over the SouthWest
Indian Ocean associated with Subtropical Indian Ocean
Dipole events
Over the South West Indian Ocean (SWIO) basin, the
observed interannual variability of TC activity can only
partially be explained by ENSO. Over the last few years,
Météo-France in La Réunion has investigated the role played
by some regional climate drivers for both basin-wide TC
Fig. 2. Representation of the positive phase of the SIOD constructed using composite
austral summer seasons (December–February) of 1981–1982, 1992–1993, 1998–19
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activity as well as the geographical distribution within the basin
(Bonnardot et al. 2021). In this context, the Subtropical Indian
Ocean Dipole (SIOD) mode was identified as a significant in-
fluence on cyclone activity during ENSO-neutral years.

The SIOD appears as the dominant PCA mode of SST
variability in the southern IO during the austral summer
(December–February, the peak of the cyclonic season in the
SWIO basin). The SIOD is an ocean-atmosphere coupled
oscillation characterised by a zonal dipole of SST anomalies
over the subtropical southern IO (Fig. 2). The coupling with the
atmosphere results in atmospheric circulation and sea level
pressure (SLP) anomalies over the South IO. While the SIOD
may be phased with ENSO, it can operate during neutral ENSO
periods with strong positive or negative phases like the IOD.

Positive events are associated with colder-than-normal SST
off Australia and a positive SLP anomaly over the tropical and
subtropical south central IO. This atmospheric anomaly drives
cool and dry air from austral latitudes all the way to the MDR
of the SWIO basin (5◦S-15◦S, 55◦E−90◦E), reducing basin-
wide TC activity by ~20%. Similarly, negative events result in
a negative SLP anomaly pattern driving moisture and warm
equatorial air over the MDR, while cool and dry air is advected
from austral latitudes to the western part of the SWIO (west of
55◦E including the Mozambique Channel and Madagascar).
Consequently, negative SIOD events tend to facilitate TC
development within the MDR, enhancing overall TC activity
by ~20%.

The SIOD may also modulate the geographical distribution
of TCs by shifting TC genesis regions and TC tracks. Positive
SIOD events tend to favour enhanced activity on two opposite
sides of the basin (east of 70◦E and over the Mozambique
Channel) while TC activity is considerably suppressed in the
central part of the basin (from Madagascar to Mascarene
Islands). Negative SIOD events tend to favour TC de-
velopments over the central and eastern part of the basin (east
of 50◦E), with southeastward oriented TC tracks, thus reducing
the risk of impacts for Madagascar and Mozambique but
increasing the risk for the Mascarene Islands.
s of standardised SST anomalies. The composite includes SST anomalies for the
99, 2005–2006, 2010–2011, and 2016–2017.
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These results suggest that the SIOD is a promising source of
predictability for SWIO TC activity at seasonal time scales,
bringing additional information for TC seasonal outlooks to that
provided by ENSO. However, predicting oscillations of the
SIOD accurately is still challenge and improving the under-
standing of the mechanisms that may force rapid variations in the
SIOD (e.g., the role of ENSO, IOD or other intra-seasonal
drivers) will be necessary to capitalise on this new source of
predictability.

3. Recent development and application of machine
learning to the seasonal TC forecasting problem

In the last decade, the use of ML and Artificial Intelligence
(AI) algorithms has shown huge potential for a wide range of
applications. These techniques have emerged also in climate,
meteorological and oceanographic fields (among others) with
convincing results. The key concept behind ML is to provide
data to machines and let them infer rules from it. Typically, a
user will define the algorithms, a potential target (e.g., the
number of TCs in a given basin), and a scoring method
(minimising a particular type of error). Then, during the
training phase, the machine will automatically adjust the
different degrees of freedom in the model and optimise the
skill. Then the algorithm can be deployed on new unseen data.

ML algorithms have broad applications, from regression/
classification problems to feature selection or clustering. ML
can strongly benefit two key aspects of TC seasonal fore-
casting: (1) constructing statistical models for useful parame-
ters (number of TCs, major TCs (Category 3-4-5 on the Saffir-
Simpson scale), ACE, etc.), (2) mining databases to extract
physical patterns that can be used in statistical models. These
aspects are discussed in more detail below.
3.1. Predictive models of seasonal TC activity
ML can advance and improve statistical forecasting ap-
proaches; for example, support vector regression (SVR) was
used by Richman et al. (2017) to predict the number of sea-
sonal TCs in the NA, leading to 40% improvement compared
to multiple linear regression. Nath et al. (2016) obtained similar
promising results using different types of neural networks
combined with large-scale climate variables to predict seasonal
TC activity over the North IO (NIO).

More recently, by combining an ensemble of statistical
models and using ML to select and weight top performing
ensemble members, Sun et al. (2021) demonstrated similar skill
to standard ensemble averages for basinwide NA activity, but
found improved skill for major hurricanes and more granular
details (such as sub-basin activity). They pointed out limita-
tions when large systematic biases of the same sign occurred
for a majority of the ensemble members.
3.2. Predictors mining and patterns extraction
For extracting key modes of variability driving TC activ-
ity, ML can play a key role in mining the large amount of
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observed data and modelled ensemble data collected and
generated over the past decades. These physical climatic
patterns can then be directly used in predictive models. Using
a causal effect network approach, Pfleiderer et al. (2020)
identified skillful spring predictors of seasonal Atlantic hur-
ricane activity that in turn increased the prediction skill of
statistical forecast models conditioned to these climate
drivers. By combining neural networks for data mining,
clustering, and a conditional chain of supervised ML algo-
rithms, Rodney and Loridan (2019) investigated landfalling
forecasts along the US coast and showed skill in predicting
US landfalling systems originating from the Cape Verde/
MDR region. Asthana et al. (2021) developed a Fused Con-
volutional Neural Network forced by climatic fields (SLP,
SST, among others) that achieved a prediction skill similar to
that of other statistical models for ACE in the NA, but at
longer lead times. However, they highlighted limitations in
finding convincing explanations for the physical patterns
emerging from their Singular Value Decomposition analysis.
Similarly, Ham et al. (2019) showed that a convolutional
neural network could not only improve on current state-of-
the-art dynamical forecast systems in predicting ENSO, but
also provide skilful forecasts for lead times of up to one and a
half years. While no study has yet investigated the impact of
integrating these models into TC outlooks, their results sug-
gest ML techniques could be used to increase the skill of TC
forecasts for longer lead times, possibly past the traditional
spring barrier, for basins strongly impacted by ENSO.

Machine learning offers a new way to extract potential
climate patterns driving TC activity around the world and could
be particularly useful for basins that have been previously less
studied. ML could also help in predicting potential correlations
between basins. Recent reviews by Chen et al. (2020) and
Wang et al. (2022) further illustrate this growth in the use of
ML for short- to long-term TC forecasting.

Despite its great potential, there are some general limitations
to applying ML for TC forecasting. ML methods require a
large amount of training data. While a broad range of observed
and simulated data are available, a limited number of years of
data on TC activity exist (e.g., the number of cyclones for a
season for the past few decades). Some ML algorithms might
suffer from this limited data, and particular care needs to be
given when training models (e.g., preventing overfitting). Pit-
falls in developing and evaluating statistical models are elab-
orated in the next subsection.
3.3. Common problems associated with building
statistical forecast models
A common issue in constructing statistical models is the
selection of model predictors, which is usually done by
choosing parameters based on correlation scores. Often corre-
lations between ENSO and climate predictors are no more
significant than those produced with time series of pairs of
Gaussian noise. The shortness of the instrumental record can
suggest swings in model predictands may be correlated with
low-pass-filtered modes of climate variability, but they may



Fig. 3. Correlations for climatic indices (y-axis) against TC counts for the
subsequent season (October–April) in the Australian and South Pacific regions
(x-axis) for the period 1970–2000 (a) and 2000–2021 (b). Climate indices from
top to bottom (September means unless indicated otherwise): Southern Oscil-
lation Index (JAS), Niño3.4 (JAS), Niño1+2 (JAS), Trans-Niño Index, Dipole
Mode Index, Indian Ocean (East Pole) SST, Indian Ocean (West Pole) SST,
Pacific Decadal Oscillation, Southern Annular Mode. Regions from Left to
Right: Australian Region (90◦E − 160◦E), Australian Eastern Region (142.5◦E
− 160◦E), Australian Western Region (90◦E − 125◦E), Australian Northern
Region (125◦E − 142.5◦E), South Pacific Region (142.5◦E − 120◦W). All
regions span 5◦S - 40◦S latitude except AR-NW, which is restricted to 5◦S -
25◦S.

Y. Takaya, L.-P. Caron, E. Blake et al. Tropical Cyclone Research and Review 12 (2023) 182–199
just reflect the typical stochastic nature of random processes
(Gershunov et al. 2001).

Any models using predictors selected based on correlation
must be tested further against models using additional pre-
dictors, which is often called a ‘double’ or ‘external’ cross-
validation, to account for selection bias, and to avoid prob-
lems due to autocorrelation in the predictors. Autocorrelation
(or serial correlation) removes degrees of freedom and can
generate spurious correlations among variables, suggesting
spurious physical relationships. It can also invalidate signifi-
cance tests. See Legendre and Trousselleir (1988) and Fang
and Koreisha (2004) for further discussion.

Selection bias is a common issue when building predictive
statistical models across all areas of science. Failure to account
for sample bias will create an over-fitted model, usually iden-
tified by a model which demonstrates large differences between
‘in-sample’ and ‘out-of-sample’ forecast skill. Older methods
of predictor selection (e.g. stepwise selection) have been used
in recent literature, despite being prone to selecting biassed
model predictors and being prone to overfitting. Hastie et al.
(2017) and Ambroise and McLachlan (2002) show how it is
essential that cross-validation, or the bootstrap method, be used
external to the selection process to remove selection bias.

For seasonal TC prediction models, the recent history of
ENSO events can also influence model behaviour. Often,
model skill is derived mainly from a few large ENSO events
from the late 20th century, which can lead to poorer model
forecasts for 21st century ENSO mechanisms due to the non-
stationary behaviour and influence of ENSO. For example,
Dowdy (2014) showed large reductions in correlation between
Australian TC activity and ENSO indices (SOI and Niño 3.4)
between 1982 and 1997, and 1998 and 2013. Results displayed
in Fig. 3 from Greenslade and Gregory (2023) suggest that this
issue applies to sub-basins and other indices as well.

4. Multi-model tropical cyclone forecasting and
intercomparison

The current seasonal TC forecasting landscape is frag-
mented among many research and operational groups. Thus,
the coordination of a seasonal prediction website that hosts
multiple contributors has significant benefits, such as simpli-
fying the search for information for interested users. Currently,
the NA is the only basin for which there exists an aggregator of
seasonal hurricane forecasts. This is due in part to the large
number of groups producing forecasts for that region compared
to other basins where there might not be such a need at present.
There are currently nearly 30 different groups producing sea-
sonal forecasts for the NA. Nearly half of these groups are
private vendors, while the other half consists of government
agencies and universities. In general, the forecasters tend to
rely on a combination of statistical and dynamical forecasts,
although some groups do produce purely statistical or
dynamical forecasts. This so-called hybrid approach is one that
relies conjointly on large-scale predictors from dynamical
models (though not the simulated TCs themselves) and
observed statistical relationships. In recent years, forecasts
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relying on machine learning have also been included
(Pfleiderer et al. 2020; Rodney and Loridan 2019). For many
organisations, the final outlook is often a combination of one or
multiple models along with expert judgments (Klotzbach et al.
2017).

Established in 2016, the platform1 aggregating the NA out-
looks displays the forecasted seasonal numbers of named storms,
hurricanes and major hurricanes as well as forecasted seasonal
ACE. While all participating groups produce an initial forecast
between the end of March and the beginning of June, many
groups update their forecast up until early August, just ahead of
the peak of hurricane season. Some groups will keep a regular
schedule from year to year (e.g. the National Oceanic and At-
mospheric Administration (NOAA) releases a first forecast in
May and produces an update in earlyAugust), while other groups



Fig. 4. MSSS of the ensemble mean forecast for the number of hurricanes (left) and major hurricanes (right) for the period 2016–2021. The MSSS is defined as
MSSS = 1− MSEforecast

MSEbenchmark
, where MSEforecast and MSEbenchmark are, respectively, the mean-square error of the forecast and of a benchmark. Skill with respect to the

1981–2010 climatology (10-year persistence) is in blue (green). MSSS = 1 shows a perfect forecast and MSSS≤0 is a forecast with no improvement over the
benchmark. We note that 10-year persistence is a more difficult benchmark to improve upon than climatology.
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will issue a new forecast only if they need to adjust a prior
forecast. Fig. 4 shows the skill, defined as the mean-square skill
score (MSSS), of the ensemble mean forecast for the number of
hurricanes and major hurricanes for the period 2016–2021. The
ensemble mean is constructed by 2-month periods (March-
–April, May–June, July–August) using a subset of organisations
that have consistently submitted a forecast since the platform
began operating. Note that the organisations included in each 2-
month subset vary from each other. Information on the members
included in the ensemble is provided in Appendix A. While the
sample is small, it is interesting to note the steady increase in skill
fromMarch–April to July–August. There is low but positive skill
for forecasts issued in March–April. Skill reported this early in
the year is typically minimal (Klotzbach et al. 2017; 2019).
Whether this is an artefact of the small sample size or emerges
due to the combination of multiple forecast systems (Hagedorn,
2005) is not yet known. Continuing operations of the platform
will allow a more robust evaluation of these multi-model
ensembles.

5. Seasonal TC landfall prediction

Potentially the most valuable and actionable information of
seasonal TC forecasting is the quantification of the risk of
landfalling TCs for various coastal regions. In this section we
present recent advances on this topic for three different basins.
5.1. Seasonal forecasting of TC landfalls in the NA
There are only a limited number of peer-reviewed studies on
the skill of seasonal forecasts at predicting landfall over the NA
and most of the available literature on the topic is derived from
analysis of landfalling TCs in dynamical forecasts. Vecchi
et al. (2014) showed that the Geophysical Fluid Dynamics
Laboratory (GFDL) model initialised on April 1st and July 1st
showed significant skill in predicting TC activity over the
Caribbean Sea. The skill of that particular forecast system over
the Caribbean Sea was later confirmed by Murakami et al.
(2016), who showed statistically significant skill at predicting
the number of named storms, hurricanes and even major
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hurricanes over that region for forecasts initialised in July.
Murakami et al. (2016) showed that their system could even
forecast the number of landfalling storms over the Caribbean
islands with some skill using April to July start dates. How-
ever, only the June and July start dates offered a significant
improvement over a climatological forecast. That same study
also investigated the skill at forecasting landfalling storms over
the continental United States, and while some level of skill was
detected, only marginal improvement over climatology was
detected for the June and July start dates.

Predictability of TC activity over the Caribbean region was
also found in the UK Met Office GloSea5 system (MacLachlan
et al. 2015; Williams et al. 2015; Camp et al. 2015). Statisti-
cally significant skill was found over that region with their June
forecasts. This skill was linked to the good model response to
the ENSO signal (Camp and Caron, 2017). Investigating the
2017 hurricane season more specifically, Camp et al. (2018)
detected positive anomalies in TC tracks across the northeast
Caribbean in September 2017 — a signal which was consistent
with the observed tracks of major hurricanes Irma, Maria and
Jose observed that year. A study looking at landfalling storms
was also performed using ECMWF System 4 (Bergman et al.
2019), and some skill was found for the number of land-
falling named storms over the North American continent as a
whole, but not for the continental U.S. alone.

Skill for the Caribbean region was also detected for at least
one statistical model. Klotzbach (2011) developed a statistical
model, which showed skill at predicting hurricane activity
during the months of October–November. Klotzbach et al.
(2022) showed that the hyperactive end to the 2020 hurricane
season, for which the October–November period was particu-
larly active with 6 hurricanes and 5 major hurricanes, could
have been anticipated using this simple two-predictor model.
Colorado State University now issues October–November
Caribbean TC activity forecasts operationally.

These results suggest that the Caribbean region is a partic-
ularly predictable area of the NA and, given its proximity to
land, might offer the best potential for the development of
reliable predictions for landfalling storms in the NA for the
near future.
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5.2. Seasonal forecasting of TC landfall in the WNP
Attempts have also been made to develop skillful landfall
forecasts over the WNP. For these studies, the coastline is
often divided into three regions, which may vary across
studies but broadly correspond to: i) Japan and the Korean
peninsula, ii) East China, and iii) South China, Vietnam and
the Philippines (Fig. 5a). For example, Zhang et al. (2016b,
2017a) applied a hybrid approach to forecast landfalling TCs
over East Asia. In this case, the statistical model uses Poisson
regression, and the dynamical model is the GFDL FLOR with
flux adjustment (FLOR-FA) coupled system (Vecchi et al.
2014). For predicting the WNP landfalling TC frequency,
the simulated PMM, Atlantic Meridional Mode (AMM), North
Atlantic SSTA and the Niño-3 SST index were used as pre-
dictors based on previous studies showing substantial effects
of the SSTs over the tropical and subtropical Pacific and
Atlantic on the WNP TCs (e.g. Zhang et al. 2016c; 2017b).
The hybrid model dramatically outperforms FLOR-FA in
predicting landfalling TCs over South East Asia (SEA) for all
of the initial month predictions as well as Middle East Asia
(MEA) and North East Asia (NEA) for most initial months
(Fig. 4b).The study highlights that the remote effects of the
PMM and North Atlantic SST can be used to improve forecast
skills for East Asia landfalling TCs.

It is worth noting that Zhang et al. (2017b) made use of
all available dynamical forecasts for and prior to the
initialization month to build their hybrid models. That is,
they included the predictors from the dynamical forecasts
Fig. 5. Statistical-dynamical prediction of landfalling TCs over East Asia by Zhang e
(MEA), and North East Asia (NEA). (b) Correlation coefficients between observed
falling TC frequency by the hybrid model (blue bar) and FLOR-FA (red bar) over (b)
Adapted from Zhang et al. (2017a). © American Meteorological Society. Used wit
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prior to the initialization month of interest if they were found
to improve the hybrid model compared to the results ob-
tained using only the predictions for the initialization month
of interest. They found that this helped alleviate some of the
issues they had forecasting of WNP TC activity with FLOR-
FA as the lead time decreases. These issues might have been
related to initialization shock that sometimes occurs in
dynamical models.

A hybrid forecast system for the WNP was also developed
with GloSea5. This system has been shown to exhibit signifi-
cant skill for predictions of TC landfall in East Asia for the
June–August (JJA) period when using the Western Pacific
subtropical high (WPSH) as a predictor (Camp et al. 2019).
Following these results, a trial climate service providing a TC
landfall forecast for East China, was issued in 2019, and pro-
vided good guidance of the near-average TC activity observed
in East China in JJA 2019 (Camp et al. 2020). Forecasts were
issued monthly from March–May during subsequent typhoon
seasons following improvements to the forecast method
(Mitchell and Camp 2021).

It is worth noting that for that particular region (East China
coastline), the landfall count does not appear to be correlated to
cyclone frequency or genesis location of WNP TCs, but is
more closely tied to the steering flow over the East China Sea
(Sparks and Toumi, 2021). As such, dynamical forecasts sys-
tems which can successfully forecast this flow, or large-scale
features associated with it, have the potential to be integrated
into a hybrid forecast system such as those developed with
FLOR-FA, GloSea5 and PNU CGCM (Kim et al., 2021).
t al. (2017a). (a) Targeted domains of South East Asia (SEA), Middle East Asia
June–November landfalling TC frequency and corresponding predicted land-
SEA, (c) MEA, and (d) NEA over the period 1980–2015 for each initial month.
h permission.



Fig. 6. Verification of real-time seasonal (May–October) TC frequency forecasts for the entire WNP (blue bar) and for landfall in different regions along the East
Asia coast (red: Japan/Korea, green: East China/Taiwan, purple: South China/Vietnam/Philippines) for 2016–2021. Zero means a perfect forecast, and positive and
negative values indicate an over-forecast and under-forecast, respectively. The blue and purple dashed lines indicate the approximate value of one standard deviation
from the climatological mean of the number of TCs over the entire WNP and those making landfall in the southern region respectively. Note that there was no
landfall forecast in 2019.
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While dynamical seasonal forecasts of TC activity are
becoming more common thanks to increases in horizontal
model resolution and forecast capability, attempts have been
made to produce more skillful seasonal TC forecasts using
dynamical downscaling. Huang and Chan (2014) developed a
dynamical forecast model of seasonal TC activity for various
regions along the East Asia coast using the ICTP Regional
Climate Model Version 3 (RegCM3; Pal et al. 2007) in
combination with NCEP Climate Forecast System (CFS)
forecasts (Saha et al. 2010) as both initial and lateral boundary
conditions. Using this setup, the Guy Carpenter Asia-Pacific
Climate Impact Centre has been issuing real-time 6-month
forecasts for the May–October period. Fig. 6 shows the veri-
fication of these forecasts for 2016–2021. The RegCM3
forecasts of the total number of WNP TCs are correct within
one standard deviation in four out of six years. For landfall
forecasts, the best skill is for the southern region (South China/
Vietnam/Philippines), in which the predicted numbers for all
five years are within ±2 TCs of the observed number. While
the sample is small, these results suggest that it might be
possible to use a dynamical model to produce reasonable
seasonal TC frequency forecasts for landfall frequency for the
southern region.

In order to provide information on the intensity of the
landfalling storms, which is too low in RegCM3 due to a
relatively coarse resolution, Lok and Chan (2018) nested the
Weather Research and Forecasting (WRF) model into the
RegCM3 for every TC predicted to make landfall over South
China. The WRF model was run for three days up until land-
fall. The sum of the power dissipation index (PDI) of all
landfalling TCs was used as a metric to measure the intensity of
the landfalling TCs in a season. Hindcasts show that this setup
had skill at predicting variability in PDI near the coast, but the
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system had difficulty capturing years with either very few or
many intense TCs. The skill of the system was linked to its
ability at capturing variations in the subtropical high over the
East China Sea. Operational forecasts of intensity have not yet
been issued.

Finally, Sparks and Toumi (2020) showed the potential of
applying subsurface Pacific ocean temperature as a long range
(1 year) statistical predictor of landfalling TCs over South
China. The source of this predictability is thought to lie in the
long-time constant of the ENSO recharge and shows that it
may not be necessary to entirely rely on dynamical model
forecasts of ENSO.
5.3. Seasonal prediction of TC activity in the South-West
IO using a simple track classification developed on
historical data
During the last two years, RSMC La Réunion has experi-
mented with a classification technique in order to better describe
the spatial distribution of activity within the cyclone season
(Bonnardot et al. 2022). The classification method implemented
was “impact-oriented” so that the expected predictability of track
classes would directly benefit the impact prediction skill. Classes
are built with respect to three boxes subdividing the basin in three
longitude slices (Fig. 7). For example, class 212 (containing
10.4% of tracks) is extremely impactful for the east coast of
Madagascar, while class 333 contains tracks remaining east of
70◦E, with no probable impact on inhabited territories.

Climate drivers of influence on seasonal time scales (ENSO,
IOD or SIOD; Section 2) show a promising capacity to
modulate the frequency of each class for a given season. La
Niña conditions favour classes 212 and 313 which historically
lead to the main impacts on the east coast of Madagascar



Fig. 7. Different track clusters constructed for the new SIO forecasting system. The proportion of storms in each particular cluster during the period 1986–2022 is
also provided. The yellow lines indicate maximum sustained winds from 34 kt to 63 kt while the red lines indicate maximum sustained wind greater than 64 kt.
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(Hudah and Eline in 2000; Bingiza in 2011; Batsirai in 2022).
El Niño conditions favour class 222 which has the most impact
potential for the Mascarene Islands (Mauritius or La Reunion).

Predicting the evolution of the main climate drivers (pro-
vided by seasonal forecast modelling systems) can provide
useful information on the expected modulations of each class
frequency and, consequently, allows for building innovative
graphical products showing the anticipated track characteristics
for the forthcoming season (Fig. 8). This product is presently
implemented using a statistical-dynamical model that performs
a canonical correlation analysis between large-scale predictors
(like SST or winds at several pressure levels) and the pre-
dictand defined by the number of tracks within each class.

Due to La Niña conditions, an increased number of systems
with a strong zonal component (westward motion) were pre-
dicted for the 2021–2022 season, suggesting an increased risk
of impact on the east coast of Madagascar. That first forecast
was encouraging, as that season produced three systems asso-
ciated with class 212 and one system with class 313. These two
classes are the two with the most zonal (westward tracks)
component, and all four systems (Batsirai, Dumako, Emnati
and Gombe) made landfall on the east coast of Madagascar that
season.
Fig. 8. Example of product produced in October 2021 for the TC outlook mini foru
region) and Météo-France. On the left, the climatological number of named tropical s
predicted numbers for the 2021–2022 season are provided.
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In the future, RSMC La Reunion plans on exploring the
possibility to directly use data issued from the tracking per-
formed within seasonal climate models such as the ECMWF
SEAS5 model. This dynamical approach is expected to com-
plement the information already provided by ECMWF through
its TC track density anomalies.

6. Seasonal TC prediction: user applications and services

Sub-seasonal to seasonal (S2S) predictions of atmospheric
perils have been shown to have a very broad potential user-
base that spans sectors as diverse as public health, energy
management and disaster preparedness. Users find value when
skilful S2S predictions feed coherently into early warning and
response management processes (White et al., 2017). Foun-
dational cross-peril and multi-sector S2S research has led to
recent efforts to determine the potential for TC-focused S2S
applications (Robertson et al., 2020).

It is easy to envisage that, should predictive skill for well-
defined applications also exist at the full seasonal timescale,
a similar broad user-base would likely find value. Indeed,
valuable applications of skilful forecasts for other atmospheric
perils have already been employed. As an example, in West
m co-organized by WMO, PIROI (Red Cross Intervention Platform for SWIO
ystems during the cyclonic season is listed for each track type. On the right, the
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Africa in 2008, the International Federation of Red Cross and
Red Crescent Societies (IFRC) took multiple advanced risk
management actions using seasonal rainfall forecasts, leading
to reductions in loss of life and property from floods. The value
of this anticipatory action was estimated at a 33% reduction in
cost to the eventual aid response (Tall et al., 2012).

In the specific case of TCs though, there are few published
applications of seasonal prediction information at present, and
no use cases that the authors are aware of in which seasonal in-
formation has led to anticipatory action that has been quantified
in terms of its value. There are, however, at least some use cases
that hint at the potential value of this type of information.

In the humanitarian sector, there have been attempts to
utilise seasonal TC outlooks for early warnings for small island
states in the Southern Hemisphere (Kuleshov et al., 2020;
Kuleshov, 2016). Communication of early TC warnings
through seasonal TC outlooks has potential to assist at-risk
communities with preparedness. Pre-season planning and
preparation can help avoid dangerous situations, loss of life and
excessive damage to property if a TC does strike a region.

In private industry, an idealised experiment suggest poten-
tial economic value of seasonal hurricane forecasts (Emanuel
et al. 2012) and interest in the information is evidenced in
initiatives such as:

1. A re/insurer-sponsored/supported website collating sea-
sonal NA hurricane predictions from centres around the
world.2

2. An Insurance Linked Securities (ILS) markets report/white
paper suggesting that seasonal hurricane landfall informa-
tion, if provided regionally, would allow for targeted
hedging strategies within a given season (Insurance Linked
Securities for Institutional Investors, 2019)

These humanitarian and private market applications/initia-
tives indicate the potential value of the information, if it can be
predictive about well-defined intersections of the predicted
hazard with vulnerable exposures (in this instance, the targeted
intersection of seasonal TC predictions with high human and/or
economic exposures).

While it appears that landfalling prediction is possible at
seasonal timescales (Section 5), challenges remain due to
structural issues with how seasonal forecasting methods have
been developed. For example, the lack of ability for statistical-
based seasonal prediction models to adequately forecast sub-
tropical TC activity resulted in seasonal predictions of ACE
performing relatively poorly during the 2018 NA hurricane
season (Saunders et al., 2020). The inability of typical outlooks
to distinguish activity at the subbasin scale impedes the ability
to attach coherently to real-world decision processes (and the
aforementioned intersections with vulnerable exposures), and
stakeholders would need to be cognisant of such structural
issues in advance of their use of the information.

A related challenge is that the skill of the forecasts is, at
present, usually defined by the scientific community. In the
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case of seasonal TC prediction, skill is most often judged by
comparison to mean activity generated from broad background
climatologies. This raises a potentially severe communication
challenge with stakeholders whose perceptions of skill may be
very different. Recent research has begun to investigate and
provide guidance to address this (Robbins et al., 2019).

The timeliness of the forecasts is also important for users
and is another aspect that needs to be considered. A skilful
forecast that becomes available too late to be integrated into a
decision process cannot be relied upon by the stakeholder. New
forecast products relying on subsurface ocean temperature
(Sparks and Toumi, 2020) or ML (Ham et al., 2019) could help
address this issue.

Given the myriad of end users, each of which likely require
their own formulation of both the forecast and a measure of its
skill and working on their own timeline, it would be prohibi-
tively expensive to generate predictions that were optimal for
every single decision-maker (Caron et al., 2020). However,
prioritising seasonal TC prediction research streams that
address very targeted decision/early action processes, in part-
nership with as many real-stakeholders as possible, may help to
bridge the gap between science and application more quickly
than a focus on prioritising an idealised idea of predictive skill.

7. Beyond seasonal timescales: multi-annual TC
predictions
7.1. Overview of current research and sectorial
application of multi-annual forecasts of TC activity in the
NA
Klotzbach et al. (2019) reported on skill in forecasting NA
hurricane activity on multi-annual timescales, with skill com-
ing from both external forcings (for example, by anthropogenic
aerosols; Murakami 2022), and initialization with the current
ocean state (Hermanson et al., 2014). In particular, Caron et al.
(2018) showed that multi-annual forecasts derived from
decadal prediction systems are competitive with, or improve
upon, purely statistical products. Since then, a prototype
climate service giving forecasts of 5-year-mean NA hurricane
activity has been co-developed with the reinsurance brokers
Willis Towers Watson, as part of the C3S Sectoral Applications
of Decadal Predictions project (Dunstone et al., 2022). The
prototype uses a proxy index predicted by a multi-model
ensemble of general circulation models initialised with the
current state of the ocean and atmosphere (Lockwood et al.
2023). This proxy index, based on the relative difference be-
tween MDR SST and the SST over the entire tropics, has been
shown to correlate with various measures of Atlantic TC ac-
tivity (Villarini and Vecchi 2012; Caron et al. 2014). Statistical
relationships between past forecasts of the index and (a)
observed ACE index and (b) associated US damages, are then
used to make predictions of these measures. The predictions for
2021–20253 (Fig. 9 for hindcasts over the 1960–2020 period)
indicate an increased likelihood of enhanced TC activity during



Fig. 9. 2021–2025 NA hurricane forecasts. (a) Observed and forecast 5-year running mean NA ACE forecasts; (b) Observed and forecast 5-year running total US
damage forecasts (US damages have been adjusted to 2020 by taking into account changes in wealth, population and inflation, based on the method described in
Pielke and Landsea 1998). The blue lines represent past forecasts (hindcasts), and the black lines represent past observations. Shading represents the 75% and 95%
hindcast prediction intervals. The box and whisker plots show the 2021–2025 75% and 95% prediction intervals. ρ gives the rank correlation skill score.
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this period. However, it was noted that skill in predicting the
SST index has declined in the most recent period, so more
research is needed to understand under which conditions the
forecasts are most skilful.
7.2. Origins of Atlantic Multidecadal Variability and
implication for multi-annual TC forecasts
During the 1900–2022 period, NA SST exhibited a long-term
warming trend with superimposed multidecadal fluctuations,
which has been termedAtlanticMultidecadal Variability (AMV)
or the Atlantic Multidecadal Oscillation (Kushnir 1994;
Schlesinger and Ramankutty 1994; Kerr 2000; Zhang et al.
2019). It is characterised by a basin-scale anomalous SST
pattern that has the same sign over the whole NA,withmaximum
loading over the subpolar gyre region and the subtropics,
including the Atlantic MDR of TCs. Through its tropical SST
anomalies, the AMV has been shown to modulate TC activity
over the tropical Atlantic (Goldenberg et al. 2001). In addition,
the AMV influences the tropical Pacific through an atmospheric
bridge (Li et al. 2016; McGregor et al. 2018; Ruprich-Robert
et al. 2021), possibly modulating TC activity of this basin at
multi-decadal timescale as well (Zhang et al. 2018).

The slow evolution of NA variability is encouraging for
the prospect of getting skillful multi-annual predictions of TC
activity worldwide through the impacts of the AMV
(Dunstone et al. 2011; Hermanson et al. 2014; Gong et al.
2021). In particular, the current decadal forecast systems
have skill in predicting NA SST (Smith et al. 2019; Yeager
et al. 2018) several years in advance. Yet, the origins of
this skill is spatially dependent. The skill originates mostly
from the initialization of the ocean in the NA subpolar gyre,
and from the predictability of external forcing in the tropical
NA.
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The different sources of predictability of the NA SST echo
the debate on the origins of the observed AMV. In fact, the
AMV can be driven by ocean processes through heat conver-
gence (e.g. variability in the Meridional Overturning Circula-
tion and its associated heat transport, Yeager and Robson 2017;
Swingedow et al. 2015) or by variability in atmospheric dy-
namics through associated surface heat fluxes (e.g., response to
the North Atlantic Oscillation; Clement et al. 2015). It can also
be driven by explosive tropical volcanic eruptions and their
impacts on radiative forcing (Otterå et al. 2010; Birkel et al.
2018). The variations in the emissions of anthropogenic aero-
sols are also likely to have contributed to the AMV over the
historical period (Bellomo et al. 2018; Watanabe and Tatebe
2019). In addition, it is often stressed that the contributions
of those potential drivers are spatially dependent.

In the historical simulations of the Coupled Model Inter-
comparison Projects (CMIP, Taylor et al. 2012; Eyring et al.
2016), the influence of internal climate variability dominates
extratropical NA SST variability, whereas variations in the
tropical NA SST are mainly driven by external forcings (Terray
2012). Overall, the heterogeneity between the midlatitudes and
low latitudes in the drivers of multidecadal NA SST variability
challenged the idea of the AMV being a physically coherent
basin-wide mode of variability. An AMV index defined as the
SST averaged over the whole NA (Trenberth and Shea 2006;
Mann and Emanuel 2006) might thus not be the most adequate
TC predictor as such an index might potentially be mixing
different signals that do not share the same predictability and
link to TC activity. Better disentangling the drivers of the
observed AMV is therefore crucial to assessing its predict-
ability and its link to TC activity.

In addition, studies showed that state-of-the-art coupled
climate models are missing key processes to correctly propa-
gate anomalies from the extratropical NA to the tropical NA. In
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fact, SST anomalies generated in the NA subpolar gyre by
ocean dynamics are thought to be carried to the tropics by
several feedbacks. Warm SST anomalies in the subpolar gyre
induce a cyclonic atmospheric circulation in the subtropics,
which weaken the trade winds (Klotzbach and Gray 2008).
Through the wind-evaporation-SST feedback, this leads to the
propagation of the midlatitude warming to the tropics. In
addition, the weakening of the trade winds reduces the trans-
port of Saharan dust toward the Atlantic, which leads to the
reduction of low cloud cover over the tropical NA (Brown et al.
2016; Yuan et al. 2016; Bellomo et al. 2016). Yet, the current
versions of climate models used for seasonal-to-decadal pre-
dictions are not able to simulate these feedbacks properly
(Martin et al. 2014; Yuan et al. 2016). These shortcomings can
explain the limited additional skill coming from the initializa-
tion step in the current forecast systems in predicting tropical
AMV SSTs and Atlantic TC activity.
7.3. Northern Hemisphere
Other than the AMV, the Inter-decadal Pacific Oscillation
(IPO) and Pacific Decadal Oscillation (PDO) are also dominant
modes of decadal variability and potentially predictable to
some extents (Mochizuki et al. 2010; Meehl et al. 2016). These
modes of variability together with the long-term warming trend
likely have a multi-year scale interaction and modulate inter-
annual to multi-annual TC variability, potentially providing TC
predictability. However, current initialised dynamical forecast
system capabilities do not allow us to fully explore this long-
term TC predictability.

Recently, Zhao et al. (2022) have attempted to develop a
new multi-annual prediction scheme of TC genesis frequency
in the Northern Hemisphere by constructing a regression model
based on six key climate factors including mean global surface
temperature and internal climate variability indices (ENSO,
SST anomalies over the eastern Indian Ocean and TNA, AMO
and IPO). The predictions for 2020–2030 by combining 100-
member simulations by the Max Planck Institute Earth Sys-
tem Model show a significant increase in TC genesis frequency
over the ENP while non-significant changes over the NA and
the WNP during the same period.

8. Summary and concluding remarks

The community has made further progress in recent years in
understanding long-range TC predictability. Recent studies
revealed intra-basin and remote influences that can act as
sources of seasonal TC predictability in addition to ENSO.
These findings promise new capabilities for seasonal TC
forecasting in the absence of a strong ENSO influence. New
statistical techniques, in particular ML techniques, have shown
potential in developing new forecast systems, uncovering new
connections between the large scale and TC activity and
increasing the skill of longer lead time forecasts while multi-
annual forecasts of NA TC activity continue to be investi-
gated through initialised decadal predictions. The skill of these
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forecasts is linked to the AMV, and although progress has been
made on the origin of this climate variability, further research is
necessary to disentangle its drivers and thus confidently assess
the potential of these forecasts.

The recent developments in forecast systems and numerical
modelling (e.g., increased resolution, improved physical rep-
resentation, and better initialization) have led to skillful fore-
casts at the subbasin scale. Over the NA in particular, TC
activity over the Caribbean region has been identified by
multiple studies as being relatively predictable, possibly of-
fering the best opportunity for the development of a reliable
landfalling forecast product in that basin. Over the WNP, the
East and South China coastal regions also appear as promising
areas to focus on for successful landfall forecasts at this
timescale. Further improvements in forecast systems might
reveal additional regions for which skilful landfalling pre-
dictions are possible.

However, while the potential predictability of TC activity
near some coastal regions is starting to emerge, seasonal TC
outlooks remain detached from any decision-making process as
far as we are aware. This does not have to be so, as other
seasonal forecast system products have been integrated into
early warning systems, and their value has been quantified.
This situation does not appear to be due to a lack of interest on
the part of stakeholders. Examples of interactions between
forecasters and stakeholders from the humanitarian and insur-
ance/financial industries were documented above, but they are
by no means the only sectors to have shown interest in TC
outlooks. Forecasters have reported providing outlooks for
offshore operators, major retailers, utilities, and emergency
management. However, the seasonal outlooks, in their current
form, are generally viewed by these various stakeholders solely
as an awareness-raising tool. Some stakeholders might equate
forecasts of an active season with a greater chance that their
particular area may be impacted, but such information remains
unactionable.

Routinely providing skillful and reliable landfall forecasts,
or regional forecasts for some stakeholders, would help bridge
the gap between the science and the users. However, in many
cases, this might be a necessary but insufficient condition, and
sustained interactions with stakeholders is likely to be neces-
sary to develop a product that can link coherently to a real-
world decision process. Such a co-development approach is
currently underway for the development of a product in the
SIO and, perhaps surprisingly, by the decadal forecasting
community in the construction of a prototype of multi-annual
forecasts of TC activity through the Copernicus Climate
Change Service.

To help support the operational implementation of seasonal
TC prediction services, more coordinated and formalised ef-
forts of multi-model seasonal TC prediction might be required.
One such effort is already underway for the NA. The western
North Pacific basin, for which a fair number of organisations
are already producing seasonal hurricane outlooks, could also
benefit from such effort. In this case, the range of TC metrics,
lead times and regions that are considered by various forecast
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providers would need to be addressed, but this should not
represent an insurmountable challenge.

A coordinated effort to make TC tracks derived from multi-
model ensemble dynamical forecast systems publicly available
would facilitate multi-model intercomparison and could also
provide an impetus for the analysis of TC landfall forecast
products. Analysing TC tracks of these forecast systems is a
technically challenging endeavour which can be a barrier of
entry for many research groups as it requires acquiring and
storing large amounts of high-frequency climate data. For these
reasons, studies on this topic tend to rely on a single forecast
system, typically operated locally. More multi-model studies
such as Befort et al. (2022) are desirable, but such studies are
technically challenging, and the continued increase in hori-
zontal model resolution is likely to exacerbate this problem
even further. Moreover, while good options for storm tracking
have become available (Ullrich et al. 2021; Biswas et al., 2018;
Hodges 1995), these algorithms nonetheless require an in-
vestment in time and resources to operate. Ideally, such TC
track datasets would be produced using more than one tracking
algorithm, thus allowing investigation of the uncertainty linked
to the choice of the tracker and increasing the robustness of the
results (Roberts et al. 2020; Bourdin et al. 2022).

The future of seasonal forecasting is promising: improve-
ments in forecasting systems, increased computational re-
sources and development of new technologies combined with a
deeper understanding of climate variability associated with TC
activity offer an opportunity to increase the lead time of skilful
predictions and to potentially develop skilful landfalling
products for certain regions. Sustained interactions with
stakeholders will nonetheless be necessary to develop action-
able products, and coordinated activities, such as those high-
lighted above, could help support this development and bridge
the gap between current forecasting product and decision-
making.
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Appendix A.

Forecasting systems used in the creation of the multi-system
ensemble in Section 4. An asterisk (*) indicates that the
organisation only provides a forecast for the number of hurri-
canes, and not for major hurricanes.
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March–April May–June July–August
AccuWeather
 X
Colorado State University
 X
 X
 X
Cuban Institute of Meteorology*
 X
 X
North Carolina State University
 X
National Oceanic and
Atmospheric Administration
X
 X
Maxar
 X
StormGeo
 X
 X
 X
Tropical Storm Risk
 X
 X
 X
University of Arizona
 X
UK Met Office*
 X
Weatherbell
 X
 X
WeatherTiger
 X
 X
 X
Weather Services International-
The Weather Company
X
 X
 X
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