

03 UTC on 2 June: IR, low-level winds (c/o CIMSS)

Widespread heavy rainfall across Taiwan on 2-3 June

Motivates the PRECIP campaign

- PRECIP goal:
 - Identify the universal processes that produce heavy rainfall

Overarching questions

- What mechanisms were responsible for heavy rainfall in the June 2017 case?
- What processes were important at different spatial and temporal scales?

Overarching questions

- What mechanisms were responsible for heavy rainfall in the June 2017 case?
- What processes were important at different spatial and temporal scales?

- Prior studies have examined large-scale forcing, cloud morphology, effect of cold pools, orographic influences
 - Sampe and Xie 2010, Xu and Zipser 2015, Chen et al. 2018

Mechanisms behind heavy rainfall

- PRECIP hypotheses
 - Rainfall duration is related to horizontal moisture transport
 - Rainfall intensity is related to vertical forcing

Mechanisms behind heavy rainfall

- PRECIP hypotheses
 - Rainfall duration is related to horizontal moisture transport
 - Rainfall intensity is related to vertical forcing

- RKW theory
- Vertical moisture flux
- Instability, efficient microphysical processes

$$R = Ewq$$
.

Doswell 1996

- RKW theory: convection maximizes when cold pool and environmental shear balance
- Vertical moisture flux

- RKW theory
- Vertical moisture flux: the more moisture fluxed upward, the greater the chance of condensation and precipitation

$$R = Ewq$$
.

Doswell 1996

WRF Simulations

- Domains: 6, 2, 2/3 km
- MP: Thompson aerosol aware
- 12Z 6/1 12Z 6/3
- 20 TST 6/1 20 TST 6/3
- Total rain is similar spatially, but the maximum rainfall is further south and lower in magnitude

1. Use convergence + gradient in virtual potential temperature at 975 hPa

$$\theta_p = \theta(1 + 0.608q_v - q_{cloud} - q_{rain})$$

2. Thresholds

- 1. convergence: < -0.0025
- 2. θ_V gradient: > 0.00075

1. Use convergence + gradient in virtual potential temperature at 975 hPa

$$\theta_p = \theta(1 + 0.608q_v - q_{cloud} - q_{rain})$$

2. Thresholds

- 1. convergence: < -0.0025
- 2. θ_V gradient: > 0.00075

After additional processing and filtering, we can reasonably track the front through time.

RKW Theory

Compare the difference in x-vorticity across the front to evaluate RKW theory

Vorticity difference is stronger *before* and *after* the heaviest rainfall

Vorticity difference is stronger *before* and *after* the heaviest rainfall

Vertical Moisture Flux

Comparing vertical profiles of vertical moisture flux at the front at 2 locations

Vertical moisture flux correlates with greater rainfall

Horizontal Moisture Flux

Compare the vertical profiles of horizontal moisture flux ahead of the front

Horizontal moisture flux ahead of front correlates with greater rainfall

Moisture flux dominated by wind

Suggests isentropic ascent / PV framework might be applicable

Aforementioned analysis is from a numerical simulation

- PRECIP will assess whether the relative importance of these mechanisms is similar in the real world
 - And observe bulk microphysical processes

PRECIP radar plan

We've begun preliminary analysis of radar data from 2 June case

Estimate DSD parameters with CSU RadarTools package

Similar distribution as Hurricanes Harvey (2017) and Florence (2018)

Summary

- What mechanisms were responsible for heavy rainfall in the June 2017 case?
 - RKW theory does not appear important
 - Vertical and horizontal moisture flux correlate with hourly rainfall
- What processes were important at different spatial and temporal scales?
 - Horizontal moisture flux appears important at both

- RKW theory
- High instability: need lack of stability to support ascent, but generally greater instability leads to stronger ascent, which favor strong precipitation processes
- Vertical moisture flux

$$R = Ewq$$
.

Doswell 1996

- Find median q_V value
 over all points, find point
 at each longitude closest
 to that value
- 2. Remove single bad points
- 3. Smooth and interpolate
- 4. Reasonable!

Instability

Instability offset from rainfall

Instability

Instability

CRSIM output

PRECIP will search for universal processes

