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What makes pre-depression Hagupit (2008)

dan

Here we show complex shear impacts on TC

interesting case study?
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Development was delayed due to interactions with

upper-level trough (Sep 13t — 14th)

Organized deep moist convection observed with
high spatial and temporal resolution by ELDORA
radar and dropsondes during the period of shear

impacts (T-PARC/TCS-08 campaign) (Bell and
Montgomery 2010)

After all, Hagupit survived through the high-shear
environment and eventually formed into Typhoon

genesis, analyzing multi-scale interactions

From synoptic scale wave surrounding pre-
depression Hagupit, to meso- y scale

convective cells in the pouch

Where both vertical wind shear (up
low-level) and horizontal shear were present

appeared around Sep 7™,

Marsupial Paradigm
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8. Trough from PV intrusion

Dry northerly air with
anomalously high PV at
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Impacts of strong northerly shear from the trough on the system
 Mid-level circulation decreased, Low-level circulation persisted
 RH at low-level shows dry-air intrusion, but CWV kept increasing
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The Role of Shear in Organizing Convection
* Low-level shear: cold-pool dynamics
* Mid-level shear: trailing secondary bands
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dominant can be explained by the
different low-level shear and the &

evolutional stage

« S1is young, and N2 is mature in
the evolutional stage

Low-level shear is much stronger in

South

Vorticity Budget Analysis (S1 vs. N2)
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convective cell from

Idealized simulation
Wissmeier and Smith (2011)
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Conclusion

* Pre-depression Hagupit survived through
interaction with upper level trough

 The marsupial pouch protected low-level
circulation and moisture during high shear event,
though evident vortex misalignment and dry air
intrusion in mid-upper levels

« Multi-scale, complex shear is identified, coming
from storm circulation, marsupial wave
propagation, and upper-level trough

* Local low-level vertical and horizontal shear
impacted the organization of the deep
convective cells and its vorticity generation in
meso- f and meso- y scale
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